Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Ферранте Ф.М. - Послеоперационная боль.pdf
Скачиваний:
292
Добавлен:
20.05.2015
Размер:
15.21 Mб
Скачать

 

Усиление катаболизма белков

 

 

 

Субстанция Р

Активация Т- и В-лимфоцитов

 

 

 

 

Нейротрансмиттер первичных ноцицептивных

 

 

 

афферентов

 

 

 

 

 

Стимуляция высвобождения ИЛ-1 из лейкоцитов

 

 

 

Стимуляция выхода ГР и пролактина из аденоги-

 

 

пофиза

 

 

 

 

 

Подавление секреции инсулина, индуцированной

 

 

 

глюкозой

 

 

 

мон

Фактор некроза опухоли

Секреция

лимфоцитами

и

-

 

ми/макрофагами

 

 

 

 

 

Стимуляция катаболизма углеводов, белков, жи-

 

 

ров

 

 

 

 

 

Пирогенное действие

 

 

 

Таблица 4-2. Нейроэндокринные реакции на операцию

 

 

 

Эндокринные

Усиление катаболизма Вторично повышается: АКТГ, кортизол, гормон роста, вазопрессин, катехоламин, интерлейкин-1 Снижение анаболизма

Вторично снижается: синтез инсулина

Обменные

Углеводы:

Гипергликемия Непереносимость глюкозы Инсулинорезистентность Усиление гликогенолиза Усиление глюконеогенеза Вторично снижается секреция инсулина и его внутреннее действие Вторично нарастает адреналин, глюкагон (усиление гликогенолиза) Вторично нарастает кортизол, глюкагон, гормон роста, адреналин, свободные жирные кислоты (усиленный глюконеогенез)

Белки:

повышение катаболизма повышенный синтез белков острой фазы Вторично нарастают: кортизол, адреналин, глюкагон, интерлей- кин-1

Жиры:

усиленное окисление усиленный липолиз Вторично нарастают: кортизол, глюкагон, гормон роста, катехоламины

МЕХАНИЗМЫ СТИМУЛЯЦИИ

Многие клинические наблюдения и результаты экспериментальных исследований указывают на первостепенную важность афферентных нейроген-

ных стимулов в классических стрессовых реакциях. Активация афферентных путей во время операции является первым и важным моментом в возникновении сердечно-сосудистых и гипоталамо-гипофизарных реакций[5, 6]. Уже локальное высвобождение из поврежденных тканей медиаторов(в том числе интерлейкин-1, простагландины, брадикинин, субстанция Р) стимулирует общую воспалительную реактивность[7]. Эти медиаторы непосредственно включаются в стрессовые реакции, так как, циркулируя в крови, они вызывают гормональные сдвиги в отдаленных «пусковых» органах (в том числе и в гипофизе). Эти медиаторы включаются в течение стрессовых реакций также и опосредованно, усиливая ноцицептивную афферентную трансмиссию, вызывая или потенцируя при этом высвобождение гипоталамических гормонов.

Таким образом, природа реакций, приводимых в действие хирургическим вмешательством, сложна. Она включает как гуморальные, так и воспалительные механизмы [8]. Пока еще невозможно выделить одну группу механизмов, которые бы в определенном соотношении были бы применимы к каждому из компонентов взаимосвязанного комплекса реакций [9, 10].

Нейрогенные механизмы

Ноцицептивные сигналы из места операции передаются в центральную нервную систему преимущественно по малым миелинизированным волокнам Аδ и по немиелинизированным волокнам С. Недавние исследования показали, что быстро проводящие волокна могут принимать участие также в гипоталамической активации начальных эндокринных реакций на операцию[11, 12].

Ноцицептивные волокна вступают в спинной мозг в составе задних корешков и разделяются на восходящие и нисходящие ветви, которые проходят

втракте Лиссауэра на протяжении ближайших одного или двух сегментов, где они образуют синапсы с клетками шести анатомически отличающихся друг от друга слоев заднего рога. Кожные ноцицептивные афференты проецируются на I, II и V пластины, в то время как висцеральные и мышечные Ноцицептивные афференты проецируются на пластиныI и V, но не на пластину II [6, 12]. После перекрещивания болевые волокна восходят в переднебоковом квадранте спинного мозга в составе спиноталаического и спинно- ретикулярно-таламического проводящих путей. Спино-таламический путь на уровне таламуса разделяется на медиальную и латеральную части(рис. 4-1, 4-2). Латеральная ветвь заканчивается в вентро-базальном ядре, которое играет важную роль в трансмиссии боли[6], и в заднем комплексе ядер. (Анатомия ядер таламуса описана в гл. 2.) Латеральное и медиальное ответвления

впоследующем проецируются в соматосенсорную зону коры.

Спино-ретикулярно-таламическая система имеет важное значение в автономной, гуморальной и в аффективной реакции на боль[13] (рис. 4-3). Спино-ретикулярные волокна заканчиваются билатерально в продолговатом мозге, главным образом вблизи или в самом ретикулярном гигантоклеточном

ядре. Дальнейшее их продолжение восходит в вентральном покрышечном проводящем пути и вступает в гипоталамус, где эти волокна соединяются со средним пучком переднего мозга. В его составе эти волокна достигают паравентрикулярного ядра гипоталамуса (ПВЯ), являющегося главным интегрирующим центром обоих типов (гуморальных и автономных) реакций [14].

Нейроны, содержащие вазопрессин (антидиуретический гормон-АДГ) и кортикотропин-рилизинг-гормон (КРГ), локализуются именно в ПВЯ[15, 16] (рис. 4-4). КРГ является главным гормоном гипоталамуса, стимулирую-

щим секрецию передней долей гипофиза адренокортикотропного гормона (АКТГ) и β-эндорфина (см. гл. 8, эндогенные опиоиды).

Вазопрессин транспортируется из ПВЯ и накапливается в задней доле гипофиза, откуда он секретируется в кровь. Уровень вазопрессина в плазме рассматривают как показатель стресса. Продолжительное его повышение наблюдается после больших операций, в частности после операций на грудной клетке [17]. Вазопрессин задерживает свободную воду, отмечается также синергизм его действия с секрецией гипофизом АКТГ, КРГ и β-эндорфина [16, 18].

Рис. 4-1. Медиальный и латеральный спиноталамические проводящие пути. Аксоны от тел клеток из пластинI, V, VII и VIII проецируются в основном в противоположный переднебоковой квадрант спинного мозга(на той же стороне остается небольшое число волокон). Восходящие волокна формируют спиноталамический и спинно-ретикулярно-таламический проводящие пути. Когда волокна гипоталамического пути достигают таламуса, они разделяются на медиальную и латеральную части. Медиальный спиноталамический путь проецируется в медиальный таламус, гипоталамус и в лимбическую

часть переднего мозга. Волокна латерального спиноталамического пути образуют синапсы в вентробазальном и в заднем ядрах и дальше проецируются в кору мозга.

Прямая ноцицептивная проекция от спинного мозга к гипоталамусу, к перегородочным и прилежащим к ним ядрам в настоящее время идентифицируется как спиногипоталамический путь[19]. Клетки, обеспечивающие этот проводящий путь, происходят не только из боковой ретикулярной зоны спинного мозга (которая также входит в спиноталамический путь), но также из боковых спинальных ядер и из области, примыкающей к центральному каналу (не входит в состав спиноталамического пути) [20]. Следующим различием между спиногипоталамическим и спиноталамическим проводящими путями является степень биполярности их проекции. Более 40% первого проекцируется далее на той же стороне, в то время как в спиноталамическом пути таких волокон не более10% [21]. Нейроны спиногипоталамического проводящего пути - это потенциально важный путь, с помощью которого сегментарные ноцицептивные стимулы могут дать толчок к развитию гипотала- мо-гипофизарных реакций. Однако количественный вклад этого механизма в гормональную секрецию при стрессе пока не установлен.

Рис. 4-2. Ядра таламуса (продольный вид).

Прямой ввод от спинного мозга получают следующие ядра таламуса: вентробазальный комплекс (вентрозаднебоковое и вентрозаднесрединное ядра), задний комплекс ядер(не показаны), центральное латеральное ядро (часть интраламинарного комплекса), субмедиальное ядра (не показано).

Корреляция между локализацией и тяжестью операции, с одной стороны, и степенью выраженности гормональных стрессовых реакций, с другой, может отражать степень участия невральных проводящих путей в происх- о дящих сдвигах. Ряд исследований дал убедительные доказательства сущест- вования подобной клинической зависимости[22]. Биопсия поверхностных тканей, операции на глазах и на органе слуха вызывают скромные гормональные и метаболические реакции. Операции на грудной клетке, на костях, на глубоких тканях и органах брюшной полости сопровождаются значительно более сильными реакциями.

Медиаторы воспаления

Повреждение тканей приводит к высвобождению медиаторов воспаления, в том числе субстанции Р, цитокинов, эйкосаноидов и брадикинина, которые вызывают и поддерживают стрессовые реакции[23-25]. Невральные стимулы остаются ведущими в механизмах хирургических стрессовых реакций. Однако экспериментальные исследования по тканевым повреждениям на животных с прерванной связью мозг-гипофиз показали, что гипофизарнонадпочечниковые механизмы играют важную роль в качестве экстраневральных факторов развития стресса [7].

Рис. 4-3. Спинно-ретикулярно-таламический проводящий путь.

 

Спинно-ретикулярно-таламический

путь

включает -

сп

ретикулярный путь (СРП), спинно-мезэнцефалический путь (СМП) и сред-

 

ний пучок переднего мозга (СПМ). Клетки, образующие СРП, расположены в

 

пластинах Рекседа I и V-VIII, их аксоны восходят вместе со спиноталамиче-

 

ским путем. Аксоны СРП заканчиваются в ретикулярной формации ствола

 

мозга, преимущественно в гигантоклеточном

ядре или

около него. Клетки,

 

формирующие СМП, расположены преимущественно в пластинах Рекседа I и V. Их аксоны восходят в переднебоковом квадранте до гипоталамуса, где они сливаются с СПМ, образуя синапсы преимущественно в паравентрикулярном ядре гипоталамуса.

Субстанция Р [26] действует как нейротрансмиттер в ноцицептивной афференции на периферии даже в отсутствие спинного мозга. Кроме того, она обладает выраженным иммупомодулирующим действием, в том числе стимулирует высвобождение ингерлейкина-1 из лейкоцитов [27]. Субстанция Р способствует выделению гормона роста и пролактина передней долей -ги пофиза [28], а также моделирует экзо- и эндокринную функцию поджелудочной железы (в том числе ингибирует продукцию инсулина, индуцированную глюкозой). Разнообразие общего действия субстанции Р показывает, как медиатор, появившийся при локальном раздражении, способен усиливать и поддерживать общие стрессовые реакции.

Рис. 4-4. Гипоталамус и гипофиз (иейрогипофиз и аденогипофиз).

Интерлейкин-1 - это протеин, продуцируемый макрофагами и клетками костномозгового происхождения (кроме эритроцитов). Два разных гена определяют появление двух разных форм интерлейкина-1 (ИЛ-1), именуемых а- и β- ИЛ-1. Каждая из них может быть гликозилирована по-разному. Первоначально ИЛ-1 обозначали как фактор активации лимфоцитов, или активатор β- клеток. Некоторые клеточные реакции или клинические симптомы послеоперационного периода, напоминающие действие ИЛ-1, выражаются лихорадкой, медленными волнами сна, анорексией, синтезом острофазных белков, высвобождением аминокислот из скелетных мышц, а также активацией Т- и

В-лимфоцитов и естественных клеток-киллеров. ИЛ-1 это не только медиатор воспаления и иммуностимулятор, но он непосредственно усиливает секрецию АКТГ и β-эндорфина клетками передней доли гипофиза[29]. Это служит еще одним примером того, как под влиянием возникшего на периферии гуморального фактора усиливается (возможно, в результате синергизма)

выраженность постхирургических стрессовых реакций, вызванных в силу ноцицептивной афферентной трансмиссии [23, 25, 30, 31].

Фактор некроза опухоли(ФНО) также является важным медиатором повреждающих реакций. ФНО-а (прежнее название кахектин) и ФНО-бета это близкие пептиды, секретируемые лимфоцитами и моноцитами/макрофагами разных линий. Оба эти ФНО обладают одинаковыми рецепторами. Экспериментальные исследования показали, что ФНО-а вызывает лихорадку, анорексию, усиливает синтез острофазных белков, высвобождает аминокислоты из скелетных мышц, повышает продукцию лактата, способствует гипергликемии, липолизу и снижает сосудистое сопротивление в опытах in vivo [30-33]. ФНО-а в настоящее время рассматривают как ключевой и пусковой фактор при многих проявлениях сепсиса, воспаления и множественной органной недостаточности [25].

Во время операции и после нее значительно повышается содержание в крови продуктов распада тромбоцитов. Было установлено, что увеличение уровня тромбоксана В2 и 5-гидрокситриптамина (серотонин) тесно связано с традиционными индексами хирургических стрессовых реакций. Пик концентрации тромбоксана В2 и серотонина наступает через1-2 ч после разреза кожи. Повышение уровня продуктов дезинтеграции тромбоцитов в крови может наблюдаться также и в предоперационном периоде. Это следует интерпретировать как отражение адреномедуллярной активации, вызванной психологическим стрессом [34].

Далеко не всегда все из упомянутых выше медиаторов обнаруживаются в пораженных тканях. Существуют также и другие медиаторы, например брадикинин и эйкосанид (см. гл. 2). Медиаторы, образовавшиеся в поврежденных тканях, непосредственно участвуют в стрессовых реакциях, так как, циркулируя в крови, они воздействуют на отдаленные пусковые органы[35]. Медиаторы влияют на стрессовые реакции и опосредованно усиливают афферентную ноцицептивную трансмиссию, при этом вызывая и потенцируя гормональную секрецию гипоталамуса [36]. Еще Селье в своих первых работах по стрессовым реакциям(он их назвал «общим адаптационным синдромом») пророчески рассматривал возможности их инициации веществами, образующимися в поврежденной ткани.

СТРЕССОВЫЕ ГОРМОНЫ

Выделяют две главные системы гормональной секреции(оси), участвующие в нейроэндокринных реакциях на хирургический стресс. Это ось ги- поталамус-гипофиз-надпочечники (ГТН) и симпато-адреномедуллярная система (рис. 4-5). Последняя накапливает и высвобождает катехоламины(но-

радреналин из периферических нервов и адреналин из мозгового вещества надпочечников). Адреномедуллярная система высвобождает также и опиоиды, в частности лей- и мет-энкефалины, производные проэнкефалина А (см. гл. 8) [37, 38]. Система ГГН вносит свой вклад продукцией трофических гормонов гипоталамусом (не только КРГ, см. ниже), стимуляцией гипофиза, выделяющего АКТГ, β-эндорфин, гормон роста и пролактин. Циркулирующий в крови АКТГ стимулирует надпочечники, которые в свою очередь усиливают секрецию кортизола и альдостерона.

После 40-летних исследований установлены основные принципы секреции АКТГ гипофизом[39], был выделен КРГ, оказавшийся пептидом, включавшим 41 аминокислоту (Vale и сотр., 1961) [40]. Нейроны ПВЯ гипоталамуса синтезируют КРГ и проецируют его в область средней возвышенности стебля гипофиза (см. рис. 4-4). Затем КОГ секретируется непосредственно в кровь. Проходя по системе кровеносных сосудов к передней доле гипофиза, КОГ стимулирует высвобождение АКТГ, β-эндорфина и их поступление в общую гемоциркуляцию (см. рис. 4-5) [41, 42]. АКТГ, циркулируя в крови, воздействует на рецепторы клеточной мембраны в фасцикулярной и в ретикулярной зонах коры надпочечников, активируя аденилатциклазу. Повышение внутриклеточного содержания аденозинмонофосфата (АМФ) непосредственно приводит к усилению синтеза и секреции кортизола и альдосте-

рона [43].

Рис. 4-5. Ось гипоталамус гипофиз-надпочечники (ГГН).

Знак (—) относится к угнетению отрицательной обратной связи различными субстанциями. Знак (+) означает стимуляцию секреции.

Глюкокортикоиды типа кортизола непосредственно тормозят синтез и выделение как АКТГ, так и КРГ [43-45]. Одновременно они усиливают синтез катехоламинов в мозговом слое надпочечников [9].

Недавние исследования подтвердили значительное распространение КРГ в головном и в спинном мозге, а также в надпочечниках [46]. Таким образом, КРГ действует и как нейротрансмиттер, а не только играет ведущую роль в системе ГГН (см. рис. 4-5).

Внутримозговое введение КРГ стимулирует активность симпатической нервной системы и адреномедуллярных формирований, вызывая реакции, которые не отличаются от таковых при стрессе, - повышение артериального давления, учащение пульса, увеличение содержания норадреналина и адреналина в плазме [47]. Повышение артериального давления и учащение пульса, индуцированные КРГ, наблюдаются даже у гипофизэктомированных животных, следовательно, подобные сдвиги не зависят от влияния этого гормона на гипофиз. Таким образом, вызываемые КРГ изменения функции автономной нервной системы следует объяснять воздействием гормона на нервные центры [41].

КРГ, кроме того, обладает истинным анальгетическим и противовоспалительным действием, местом приложения которого являются периферические нервы и лимфоциты. Локальные инъекции КРГ в воспаленную лапку животного снимают гипералгезию именно в силу своего периферического действия [48]. Аналгезия и снижение процессов экссудации плазмы наступают и после обычного парентерального введения КРГ благодаря противовоспалительному действию гормона на нервные окончания [49].

Подчеркивая важность КРГ, не следует забывать, что выделение АКТГ регулируется и многими другими гормонами. Катехоламины, многие пептиды, в том числе вазопрессин, окситоцин, ангиотензин-II, стимулируют высвобождение АКТГ [2, 17, 35, 42, 44]. В частности, вазопрессин стимулирует выделение АКТГ как непосредственно, воздействуя на клетки передней доли гипофиза, так и опосредованно, потенцируя активность КРГ [17, 20, 44, 50].

Подобно тому, как КРГ не один регулирует секрецию АКТГ, так синтез и выделение этого гормона не происходят изолированно. АКТГ и β-эндорфин являются производными одного веществапроопимеланокортина (ПОМК)

[51-54]. Это вещество подвергается серии протеолитических расщеплений и модификаций в кортикотрофах передней доли гипофиза, трансформируясь при этом в АКТГ и в β-липотропин[55]. Последний в свою очередь при расщеплении образует другие вещества, в том числе и β-эндорфин. Эндогенные опиоидные пептиды, как и экзогенные опиоиды, угнетают секрецию гонадотропина и оказывают двухфазное влияние на секрецию других гипофизарных гормонов, например вазопрессина [37], гормона роста и пролактина. Помимо центрального аналгезирующего действия, эндогенные опиоиды, попавшие в общую циркуляцию, оказывают обезболивающее и противовоспалительное действие на периферии в местах повреждения тканей[56, 57]. Это действие согласуется с иммунологическими аспектами стрессовых реакций(обсуждаются ниже). Поскольку секреция опоидных пептидов является одним из ком-

понентов активации системы ГГН, то вполне закономерным представляется ингибирующее влияние на этот процесс экзогенных опиоидов[42, 43, 58]. Поэтому снижение реакции в системе ГГН на фоне введения опиоидов не обязательно означает адекватное обезболивание.

Повышение содержания в крови гормона роста и пролактина было отмечано во время операции и в послеоперационном периоде[9, 59]. Секреция первого регулируется многими гормонами, в том числе АКТГ. вазопрессином, кортизолом, катехоламинами. Медиаторы типа простагландинов(простагландин E2) стимулируют высвобождение гормона роста(ГР), активируя рецепторы гормонов, усиливающих его секрецию. Пролактин и ГР обладают выраженным сходством и одинаково влияют на метаболизм и иммунитет (мобилизация липидов и непереносимость углеводов) [60]. Место специфического связывания пролактина было обнаружено на лимфоцитах и лейкоцитах, синтезирующих ГР [6]. Как правило, опиоиды снижают уровень ГР, повышающийся во время операции. Но в то же время опиоиды, назначенные до развития стрессовых реакций, способствуют кратковременному увеличению уровня этих гормонов в плазме.

Ограниченные и иногда противоречивые сведения опубликованы по поводу нарушения функции тиреоидных гормонов и их динамики во время стресса. Секреция тиреоидстимулирующего гормона гипофиза снижается, содержание в плазме активных форм тиреоидного гормона(трийодтиронин, тироксин) также уменьшается. Одновременно нарастает содержание неактивных форм, например реверсированного Т3 [59]. Нормализация этих сдвигов наступает спустя 1 нед после травмы или операции [24, 52].

Суммируя приведенные выше сведения, следует отметить, что нейроэндокринные реакции сопровождаются высвобождением трофических гормонов гипоталамусом. Они стимулируют выделение гипофизом АКТГ, β- эндорфина, гормона роста и пролактина[9, 10, 62]. Секреция других гормонов, например гонадотропина и тиреоидстимулирующего гормона, при стрессе подавляется. Вазопрессин выделяется задней долей гипофиза под контролем гипоталамуса. Уровень катаболических гормонов в крови нарастает. Это относится к катехоламинам, кортизолу, глюкагону. В то же время содержание анаболических гормонов, в частности инсулина, снижается [63, 64].

МЕТАБОЛИЧЕСКИЕ РЕАКЦИИ НА ОПЕРАЦИЮ ИЛИ ТРАВМУ

Более 50 лет назад Guthbertson обнаружил нарушения обмена, вызванные костными и иными повреждениями. Он выделил две фазы этих нарушений: фазу «отлива» и фазу «прилива» (табл. 4-3) [24, 65, 66]. Первая (фаза «отлива») отражает снижение метаболических процессов. Они опускаются ниже уровня, ожидаемого по расходу потребляемой энергии. Фаза «прилива» характеризуется относительно низким потреблением кислорода и ослабле-н ной способностью к продукции тепла. Длительность этой фазы зависит от многих факторов, например от тяжести повреждения и от проводимого лече-

ния, но обычно она длится не более суток. Содержание катехоламинов, кор-

тизола, глюкагона и гормона роста в плазме обычно повышено, а концентра-

ция инсулина снижена по сравнению с соответствующим уровнем глюкозы.

Таблица 4-3. Фаза «прилива» и «отлива» при стрессовых реакциях

Фаза «отлива» (шокоподобная)

Фаза «прилива»

 

 

Развивается рано (первые 24 ч)

Развивается поздно (2 -5-й день)

Усиление или ослабление сердечного

Усиление сердечного выброса Усиле-

выброса

ние потребления кислорода Усиление

Снижение потребления кислорода

регионального кровотока (в основном

Спазм сосудов (в основном α-зффект)

β-эффект)

Уменьшение мочеотделения

Состояние гиперметаболизма

Состояние гипометаболизма

Повышение температуры тела

Снижение температуры тела

Повышение катаболизма белков

Снижение уровня инсулина

Усиление окисления жирных

 

кислот

 

Непереносимость глюкозы

 

Усиление глюконеогенеза

 

Усиление гликогенолиза

Фаза «прилива» сменяется фазой «отлива», в которой преобладают процессы катаболизма. Ускоряются показатели обмена, повышаются температура тела, потребление кислорода, ускоряется пульс, увеличивается выделение азота с мочой, растут и другие показатели усиленного распада белков (например, 3-метилгистидин, цинк, креатинин) [67]. Продолжительность и интенсивность этой фазы преобладания процессов катаболизма варьируют в зависимости от природы поражения и его тяжести.

Обмен глюкозы

После тяжелых травм нарушается нормальная регуляция процессов как поглощения, так и высвобождения глюкозы. В этом участвуют несколько механизмов. Гипергликемия после операции отражает недостаточность процес- сов двойной обратной связи, когда повышенная концентрация глюкозы в крови должна тормозить ее образование в печени и усиливать потребление на периферии [66, 68]. Стимуляция глюконеогенеза в печени отражает ус-и ленное поступление следующих субстратов: аминокислот типа аланина из скелетных мышц [68], глицерола, образующегося при липолизе жировой ткани, и лактата, появляющегося в ишемизированных участках тканей и в очгах воспаления [66-69].

В обычных условиях увеличение уровня глюкозы в крови стимулирует выделение инсулина. Под действием этого гормона усиливаются периферический клиренс глюкозы, ее потребление мышцами и жировой тканью. Непо-