Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Самоучитель по Maple.docx
Скачиваний:
258
Добавлен:
08.03.2016
Размер:
17.32 Mб
Скачать

20. Разложение в ряды Тейлора и Маклорена Разложение в ряды Тейлора и Маклорена

Для разложения в ряд Тейлора используется функция taylor(expr, eq/nm, n). Здесь ехрr — разлагаемое в ряд выражение, eq/nm — равенство (в виде х=а) или имя переменной (например, х), n — необязательный параметр, указывающий на порядок разложения и представленный целым положительным числом (при отсутствии указания порядка он по умолчанию принимается равным 6). При задании eq/nm в виде х=а разложение производится относительно точки х =а. При указании eq/nm в виде просто имени переменной разложение ищется в окрестности нулевой точки, то есть фактически вычисляется ряд Маклорена.

Ниже представлены примеры применения функции taylor:

Не все выражения (функции) имеют разложение в ряд Тейлора. Ниже дан пример такого рода:

> taylor(l/x+x^2,x,5):

Error, does not have a taylor expansion, try seriesQ

> series(l/x+x^2,x,10);

je-4*2

> taylor(l/x+x*2,x=l,5);

2 +x - 1 + 2(x - 1f - (x - 1 )3 +(x - 1 )4 +O((x- 1 )5)

Здесь Maple 7 отказалась от вычисления ряда Тейлора в окрестности точки х = 0 (по умолчанию) и предложил воспользоваться функцией series. Однако эта функция просто повторяет исходное разложение. В то же время в окрестности точки х = 1 ряд Тейлора вычисляется.

Для разложения в ряд Тейлора функций нескольких переменных используется библиотечная функция mtaylor:

mtaylor(f. v)

mtaylorCf. v. n)

mtaylor(f. v, n, w)

Здесь f — алгебраическое выражение, v — список имен или равенств, n — необязательное число, задающее порядок разложения, w — необязательный список целых чисел, задающих «вес» каждой из переменных списка v. Эта функция должна вызываться из библиотеки Maple 7 с помощью команды readlib:

Для получения только коэффициента при k=м члене ряда Тейлора можно использовать функцию coeftayl (expr,var,k). Если ехрr — функция нескольких переменных, то k должен задаваться списком порядков коэффициентов.

48.gif

49.gif

21. Пример документа — разложение синуса в ряд Пример документа — разложение синуса в ряд

Полезно сочетать разложение выражений (функций) в ряд Тейлора с графической визуализацией такого разложения. Рассмотрим документ, в котором наглядно показаны возможности представления функции рядами Тейлора и Маклорена. На рис. 8.8 показана первая часть документа. Она дает пример разложения в ряд Тейлора функции sin(x) с построением ее графика и графика по разложению в ряд. Поскольку выбрано разложение относительно точки х = 0, то полученный ряд является рядом Маклорена. Это хороший пример визуализации результатов математических вычислений — здесь наглядно видно, что при малых значениях х график ряда практически повторяет разлагаемую функцию, но затем начинает сильно от нее отходить.

Обратите внимание, несмотря на то что мы задали шестой порядок ряда, последний член имеет только пятый порядок. Это связано со спецификой данного разложения — в нем просто отсутствуют члены четного порядка. Можно буквально в считанные секунды попробовать изменить число членов ряда или диапазон изменения переменной х, что и показано на рис. 8.9 (вторая часть документа). При этом легко убедиться в том, что при больших х поведение ряда не имеет ничего общего с поведением разлагаемой в ряд функции, в частности нет и намека на периодичность разложения, которая присуща тригонометрической функции sin(x).

В заключительной (третьей) части этого документа (рис. 8.10) представлено уже истинное разложение синуса в ряд Тейлора в окрестности смещенной от нуля точки х = 1. При смещении точки, относительно которой ведется разложение, выражение для ряда Тейлора существенно изменяется. В нем, во-первых, появляются члены четных степеней, а во-вторых, фигурирует аргумент вида (х- 1)n. Нетрудно заметить, что даже при представлении такой «простой» функции, как sin(x), приемлемая погрешность представления одного периода достигается при числе членов ряда Тейлора порядка 10 и более. Однако существенное повышение порядка ряда нецелесообразно из-за резкого возрастания вычислительных погрешностей. Кроме того, серьезным недостатком аппроксимации рядом Тейлора является непредсказуемое поведение полинома вдали от точки, относительно которой задается представление. Это хорошо видно на всех трех приведенных примерах.

Рис. 8.8. Разложение функции sin(x) в ряд Маклорена 6-го порядка и построение ее графика

Рис. 8.9.Разложение функции sin(x) в ряд Маклорена 12-го порядка и построение ее графика

a

б

Рис. 8.10. Разложение функции sin(x) в ряд Тейлора 12-го порядка относительно точки х = 1 и построение ее графика

Помимо указанных выше разложений в ряд Maple 7 имеет множество функций для иных разложений. Например, в пакете numapprox имеется функция laurent(expr,var,n), позволяющая получить разложение в ряд Лорана, функция chebyshev(expr, eq/nm, eps) дает разложение в форме полиномов Чебышева и т. д.

64.gif

65.gif

66.gif

82.gif

22. Решение уравнений и неравенств

Решение уравнений и неравенств

Основная функция solve

Решение линейных и нелинейных уравнений и неравенств — еще одна важная область математического анализа. Maple 7 имеет мощные средства для такого решения. Так, для решения линейных и нелинейных уравнений в аналитическом виде используется достаточно универсальная и гибкая функция solve(eqn, var) или so1ve({eqnl,eqn2,.. .}.{varl,var2,...}), где eqn — уравнение, содержащее функцию ряда переменных, var — переменная, по которой ищется решение, Если при записи eqn не используются знак равенства или знаки отношения, считается, что solve ищет корни уравнения eqn=0.

Характер решений можно изменить с помощью глобальных переменных:

  • _SolutionsMayBeLost — при значении true дает решение, которое при обычном применении функции solve возвращает значения NULL;

  • _MaxSols — задает максимальное число решений;

  • _EnvAll Solutions — при значении true задает выдачу всех решений.

В решениях могут встречаться следующие обозначения:

  • _NN — указывает на неотрицательные решения;

  • _В — указывает на решения в бинарной форме;

  • _Z — указывает на то, что решение содержит целые числа;

  • %N — при текстовом формате вывода задает общие члены решения и обеспечивает более компактную форму его представления.

В форме solve[subtopic] возможны параметры subtopic функции solve следующих типов:

floats functions identity ineq linear

radical scalar series system

При решении систем уравнений они и список переменных задаются как множества, то есть в фигурных скобках. При этом и результат решения получается в виде множества. Чтобы преобразовать его к обычному решению, нужно использовать функцию assign, которая обеспечивает присваивание переменным значений, взятых из множества.

Функция solve старается дать решение в аналитическом виде. Это не означает, что ее нельзя использовать для получения корней уравнений в численном виде. Просто для этого придется использовать функции evalf или convert. Если результат решения представлен через функцию RootOf, то зачастую можно получить все корни с помощью функции all values.