Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Самоучитель по Maple.docx
Скачиваний:
258
Добавлен:
08.03.2016
Размер:
17.32 Mб
Скачать

8. Пакет ортогональных многочленов orthopoly

Пакет ортогональных многочленов orthopoly

Ортогональные многочлены (полиномы) находят самое широкое применение в различных математических расчетах. В частности, они широко используются в алгоритмах интерполяции, экстраполяции и аппроксимации различных функциональных зависимостей. В пакете orthopoly задано в функци:

> with(orthopoly);

[G,H,L,P,T,U]

Однобуквенные имена этих функций отождествляются с первой буквой в наименовании ортогональных полиномов. Вопреки принятым в Maple 7 правилам, большие буквы в названиях этих полиномов не указывают на инертность данных функций — все они являются немедленно вычисляемыми. В данном разделе функции этого пакета будут полностью описаны. Отметим определения указанных функций:

  • G(n,a,x) — полином Гегенбауэра (из семейства ультрасферических полиномов);

  • Н(n,х) — полином Эрмита;

  • L(n,x) — полином Лагерра;

  • L(n,а,х) — обобщенный полином Лагерра;

  • Р(n,х) — полином Лежандра;

  • P(n,a,b,x) — полином Якоби;

  • Т(n,х) — обобщенный полином Чебышева первого рода;

  • U(n,x) — обобщенный полином Чебышева второго рода.

Свойства ортогональных многочленов хорошо известны. Все они характеризуются целочисленным порядком n, аргументом х и иногда дополнительными параметрами а и b. Существуют простые рекуррентные формулы, позволяющие найти полином n-го порядка по значению полинома (n - 1)-го порядка. Эти формулы и используются для вычисления полиномов высшего порядка. Ниже представлены примеры вычисления ортогональных полиномов:

Представляет интерес построение графиков ортогональных многочленов. На рис. 14.1 построены графики ряда многочленов Гегенбауэра и Эрмита.

Рис. 14.1. Графики ортогональных многочленов Гегенбауэра и Эрмита

На рис. 14.2 построены графики ортогональных многочленов Лагерра и Лежандра.

Наконец, на рис. 14.3 даны графики ортогональных многочленов Чебышева Т(n, х) и U(n, х).

Приведенные графики дают начальное представление о поведении ортогональных многочленов.

Рис. 14.2.Графики ортогональных многочленов Лагерра и Лежандра

Рис. 14.3. Графики ортогональных многочленов Чебышева

К примеру, многочлены Чебышева имеют минимальное отклонение от оси абсцисс в заданном интервале изменениях. Это их свойство объясняет полезное применение таких многочленов при решении задач аппроксимации функций. Можно порекомендовать читателю по их образу и подобию построить графики ортогональных многочленов при других значениях параметра и и диапазонах изменения аргумента х.

В отличие от ряда элементарных функций ортогональные многочлены определены только для действительного аргументах. При комплексном аргументе просто повторяется исходное выражение с многочленом:

> eva1f(U(2,2+3*I))):

Р(2,2 + 3I)

> evalf(sqrt(2+3*I)));

1.674149228+ .8959774761I

Ортогональные многочлены неопределены также и для дробного показателя n. Впрочем, надо отметить, что такие многочлены на практике используются крайне редко.

2.gif

3.gif

40.gif

42.gif

44.gif

9. Пакет для работы с суммами sumtools

Пакет для работы с суммами sumtools

Состав пакета sumtools

Этот инструментальный пакет предназначен для работы со специальными суммами. Он содержит указанные ниже функции:

> with(suintools);

[Hypersum, Sumtohyper, extended_gosper, gosper, hyperrecursion, hypersum, hyperterm, simpcomb, sumrecursion, sumtohyper]

Назначение функций данного пакета перечислено ниже:

  • hypersum(U, L, z, n) и Hypersum(U, L, z, n) — вычисление гиперсумм;

  • sumtohyper(f, k) и Sumtohyper(f, k) — преобразование сумм в гиперсуммы;

  • extended_gosper(f, k), extended_gosper(f, k=m..n) и extended_gosper(f, k, j) — реализация расширенного алгоритма Госпера;

  • gosper(f, k) и gosper(f, k=m..n) — реализация алгоритма Госпера;

  • hyperrecursion(U, L, z, s(n)) — реализация гиперрекурсионного алгоритма;

  • hyperterm(U, L, z, k) и Hyperterm(U, L,z, k) — ввод гипергеометрического терма.