Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Самоучитель по Maple.docx
Скачиваний:
258
Добавлен:
08.03.2016
Размер:
17.32 Mб
Скачать

17. Вычисление корней полинома Вычисление корней полинома

Для вычисления действительных и комплексных корней полиномов служит уже известная нам функция solve(p.x), возвращающая список корней полинома р одной переменной. Кроме того, имеются следующие функции для вычисления корней полиномов:

roots(p) , roots(p. К) ,

roots(p. x), roots(p. x. К)

Эти функции вычисляют точные корни в рациональной или алгебраической области чисел. Корни возвращаются в виде [ [rl.ml], .... [rn.mn] ], где ri — это

корень полинома, a mi — порядковый номер полинома. С действиями этих функций можно разобраться с помощью приведенных ниже примеров:

24.gif

18. Основные операции с полиномами Основные операции с полиномами

С полиномами могут выполняться различные операции. Прежде всего отметим некоторые функции, которые относятся к одному полиному:

  • psqrt(p) — возвращает квадрат полинома;

  • proot(p.n) — возвращает n -ю степень полинома;

  • realroot(p) — возвращает интервал, в котором находятся действительные корни полинома;

  • randpolyCvars, eqns) — возвращает случайный полином по переменным vans (список) с максимальной степенью eqns;

  • discrim(p,var) — вычисление дискриминанта полинома по переменной var;

  • Primitive(a) mod p — проверка полинома на примитивность (возвращает true, если полином примитивен).

Действие этих функций достаточно очевидно, поэтому ограничимся приведением примеров их использования:

Обратите внимание на то, что для использования некоторых из приведенных функций необходим вызов их из стандартной библиотеки. Для функции randpoly приведенные результаты случайны, так что, скорее всего, их повторение невозможно.

С полиномами можно выполнять обычные операции, используя для этого соответствующие операторы:

В целом надо отметить, что аппарат действий с полиномами в Maple 7 хорошо развит и позволяет выполнять с ними практически любые математические операции. В частности, можно вычислять производные от полиномов и интегралы, у которых полиномы являются подынтегральными функциями:

25.gif

26.gif

27.gif

28.gif

19. Операции над степенными многочленами с отрицательными степенями

Операции над степенными многочленами с отрицательными степенями

Хотя в подавляющем большинстве случаев используются степенные многочлены (полиномы) с положительными степенями, Maple 7 не накладывает особых ограничений и на многочлены с отрицательными степенями. Например, можно задать такой степенной многочлен:

Нетрудно показать, что с ним можно выполнять различные операции:

ПРИМЕЧАНИЕ

Maple 7 не накладывает ограничений на применение степенных многочленов (полиномов) с отрицательными степенями. Однако свойства таких полиномов заметно отличаются от свойств полиномов с положительными степенями, поэтому при применении первых надо проявлять известную осторожность.

29.gif

30.gif

20. Интерполяция и аппроксимация функциональных зависимостей. Интерполяция и аппроксимация функциональных зависимостей

Интерполяция, экстраполяция и аппроксимация

Вычисление многих функций, особенно специальных, требует больших затрат времени. Поэтому до сих пор широко применяются таблицы таких функций. Достаточно отметить знаменитые на весь мир таблицы в книге «Справочник по специальным функциям с формулами, графиками и таблицами» под редакцией М. Абрамовица и И. Стиган [59].

Если некоторая зависимость у(х) представлена рядом табличных отсчетов y(x), то интерполяцией принято называть вычисление значений у(х) при заданном х, расположенном в интервале между отсчетами. За пределами общего интервала определения функции [а,b], то есть при х < а и х > b, вычисление у(х) называют экстраполяцией (или иногда предсказанием значений функции). В данном случае речь идет об одномерной интерполяции, но возможны двумерная интерполяция функций двух переменных z(x, у) и даже многомерная интерполяция для функций многих переменных.

Интерполяция и экстраполяция часто выполняются по некоторой скрытой, но подразумеваемой зависимости. Например, если узловые точки функции соединить отрезками прямых, то будем иметь многоинтервальную линейную интерполяцию данных. Если использовать отрезки параболы, то интерполяция будет параболической. Особое значение имеет многоинтервальная сплайн-интерполяция, области применения которой уже сейчас весьма обширны и непрерывно расширяются. Интерполяция рядом Фурье (набором синусоидальных функций) также достаточно хорошо известна; она эффективна при интерполяции периодических функций.

Аппроксимацией в системах компьютерной математики обычно называют получение приближенных значений какого-либо выражения. Однако под аппроксимацией функций подразумевается получение некоторой конкретной функции, вычисленные значения которой с некоторой точностью аналогичны аппроксимируемой зависимости. Обычно предпочитают найти одну зависимость, приближающую заданный ряд узловых точек. Часто для этого используют степенные многочлены — полиномы.

Здесь мы будем рассматривать такие виды аппроксимации, которые дают точные значения функции у(х) в узловых точках в пределах погрешности вычислений по умолчанию. Если аппроксимирующая зависимость выбирается из условия наименьшей среднеквадратической погрешности в узловых точках (метод наименьших квадратов), то мы имеем регрессию или приближение функций по методу наименьших квадратов.