Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Самоучитель по Maple.docx
Скачиваний:
258
Добавлен:
08.03.2016
Размер:
17.32 Mб
Скачать

13. Пакет числовой аппроксимации numapprox

Пакет числовой аппроксимации numapprox

Состав пакета numapprox

Этот пакет содержит небольшое число безусловно очень важных функций:

> with(numapprox);

[chebdeg, chebmult, chebpade, chebsort, chebyshev, confracform, hermite_pade, hornerform, infnorm, laurent, minimax, pade, remez]

В их числе функции интерполяции и аппроксимации полиномами Чебышева, рядом Тейлора, отношением полиномов (Паде-аппроксимация) и др. Все они широко применяются не только в фундаментальной математике, но и при решении многих прикладных задач. Рассмотрим их, начиная с функций аппроксимации аналитических зависимостей.

14. Разложение функции в ряд Лорана

Разложение функции в ряд Лорана

Для разложения функции f в ряд Лорана с порядком n в окрестности точки х = а (или х = 0) служит функция laurent:

1aurent(f, x=a.. n)

1aurent(f, х, n)

Представленный ниже пример иллюстрирует реализацию разложения в ряд Лорана:

10.gif

15. Паде-аппроксимация аналитических функций

Паде-аппроксимация аналитических функций

Для аппроксимации аналитических функций одной из лучших является Паде-аппроксимация, при которой заданная функция приближается отношением двух полиномов. Для осуществления такой аппроксимации используется функция pade:

pade(f. x=a, [m.n])

pade(f.,х, [m.n])

Здесь f — аналитическое выражение или функция, х — переменная, относительно которой записывается аппроксимирующая функция, а — координата точки, относительно которой выполняется аппроксимация, m, n — максимальные степени полиномов числителя и знаменателя. Технику аппроксимации Паде поясняет рис. 14.4.

На рис. 14.4 представлена аппроксимация синусоидальной функции, а также построены графики этой функции и аппроксимирующей функции. Под ними дан также график абсолютной погрешности для этого вида аппроксимации. Нетрудно заметить, что уже в интервале [-л, я] погрешность резко возрастает на концах интервала аппроксимации.

Важным достоинством Паде-аппроксимации является возможность довольно точного приближения разрывных функций. Это связано с тем, что нули знаменателя у аппроксимирующего выражения способны приближать разрывы функций, если на заданном интервале аппроксимации число разрывов конечно. На рис. 14.5 представлен пример Паде-аппроксимации функции tan(x) в интервале от -4,5 до 4,5, включающем два разрыва функции.

Как видно из рис. 14.5, расхождение между функцией тангенса и ее аппроксимирующей функцией едва заметно лишь на краях интервала аппроксимации. Оба разрыва прекрасно приближаются аппроксимирующей функцией. Такой характер аппроксимации подтверждается и графиком погрешности, которая лишь на концах интервала аппроксимации [-4,0, 4,0] достигает значений 0,01 (около 1%).

Рис. 14.4.Аппроксимация Паде для синусоидальной функции

Рис. 14.5. Аппроксимация Паде для разрывной функции тангенса

46.gif

48.gif

16. Паде-аппроксимация с полиномами Чебышева

Паде-аппроксимация с полиномами Чебышева

Для многих аналитических зависимостей хорошие результаты дает аппроксимация полиномами Чебышева. В общем случае применяется Паде-аппроксимация отношением таких полиномов. Она реализуется функциями chebpade:

chebpade(f, x=a..b, [m.n])

chebpade(f., x, [m.n])

chebpade(f, a..b, [m,n])

Здесь а..b задает отрезок аппроксимации, тип— максимальные степени числителя и знаменателя полиномов Чебышева. Приведенный ниже пример показывает аппроксимацию Паде полиномами Чебышева для функции f=cos(x):

11.gif