Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
ТНУ им Вернадского . Пособие Шульгина энд Гюнне...doc
Скачиваний:
139
Добавлен:
08.11.2019
Размер:
7.31 Mб
Скачать

8. Химическая кинетика

8.3.1. Предмет химической кинетики. Скорость химической реакции. Энергия активации.

Химическая кинетика - это раздел теории химических процессов, изучающий механизмы протекания и скорости химичеcких реакций. В отличие от химической термодинамики, изучающей состояние системы вне зависимости от того, как это состояние возникло, химическая кинетика имеет предметом изучения конкретные пути перехода из одного состояния в другое, т.е. возможность реализации процесса и его развитие во времени.

Под механизмом реакции понимают последовательность элементарных (одностадийных) реакций, приводящих к экспериментально наблюдаемым реакции и ее кинетике.

Скорость химической реакции - это число актов химического взаимодействия за единицу времени в единице реакционного пространства.

Химические реакции могут быть подразделены на гомогенные и гетерогенные. Гомогенные реакции протекают во всем объеме фазы (например, взаимодействие азота с водородом в газовой фазе или реакция между гидроксидом натрия и азотной кислотой в растворе). Гетерогенные реакции протекают на поверхности раздела фаз (например, взаимодействие оксида магния с азотной кислотой в растворе). Для гомогенных реакций единицей реакционного пространства следует считать единицу объема, для гетерогенных - единицу поверхности раздела фаз. Поскольку число актов взаимодействия пропорционально количеству прореагировавшего или образовавшегося вещества в единице реакционного пространства, средняя скорость реакции за отрезок времени

выразится уравнением

, (8-34)

где ∆n = n2 - n1 - изменение количества вещества, по которому измеряется скорость, за время ∆, Х - объем фазы или поверхность раздела фаз. Знак "плюс" в уравнении (8-34) отвечает случаю, когда выбранное вещество является продуктом реакции и ∆n > 0; знак "минус" соответствует случаю, когда вещество в процессе реакции расходуется и ∆n < 0. Для гомогенных реакций выражение (8-34) принимает вид

или, поскольку - изменение концентрации вещества в молях на литр (С),

В процессе реакции концентрации веществ изменяются, следовательно, меняется и скорость. Скорость реакции в данный момент времени (истинная скорость) определяется первой производной концентрации по времени

(8-35)

Δ→0

Уравнение (8-35) часто используют и для гетерогенных реакций, если для данного отрезка времени поверхность раздела фаз можно считать постоянной. В этом случае о скорости реакции судят по изменению концентрации одного из веществ, находящихся в газовой фазе или в растворе. Например, о скорости реакции растворения цинка в серной кислоте (гетерогенная реакция) можно судить по изменению концентрации ионов водорода в жидкой фазе.

Пусть вещество А превращается в вещество В по уравнению

А → В (8-36)

Если вещество А стабильно, то образование его на конечной стадии обязательно должно было сопровождаться понижением энергии Гиббса независимо от того, является ли реакция синтеза А экзотермической или эндотермической. В противном случае вещество А просто не смогло бы образоваться. Поэтому вещество А не может непосредственно превратиться в вещество В, даже если для реакции (8-36) ΔG < 0. Веществу А необходимо предварительно сообщить некоторую энергию, чтобы вывести его из устойчивого состояния, так как только тогда станет возможным превращение его в вещество В. Таким образом, путь реакции всегда включает три состояния: исходные вещества (реагенты), переходное или активированное состояние и продукты реакции.

Минимальное количество энергии, которое необходимо сообщить системе, чтобы взаимодействие стало возможным, называется энергией активации а, кДж/моль).

Один из путей, по которому могла бы протекать термодинамически разрешенная реакция, включает расщепление молекул реагентов на отдельные атомы и синтез из последних продуктов реакции. Однако этот путь обычно не реализуется, так как ему отвечает очень высокая энергия активации. Для большинства процессов промежуточной стадией является образование так называемого активированного комплекса.

Активированный комплекс - это ассоциат частиц, участвующих в химической реакции, в котором синхронно происходит разрыв старых и образование новых связей.

Активированный комплекс нельзя рассматривать как неустойчивое соединение, так как основные характеристики вещества (межъядерные расстояния, валентные углы и т.д.) к нему неприменимы. Время существования активированного комплекса очень мало (10-12 - 10-13 с).

Протекание реакций изображают с помощью кинетических диаграмм. При построении таких диаграмм по абсциссе откладывают путь реакции, указывая, как процесс развивается во времени, а по ординате - значения энтальпии системы. Подобная диаграмма приведена на рис. 56. Вещества А и В превращаются в соединение АВ с тепловым эффектом процесса ΔН; при этом исходные вещества, поглощая энергию Еа(пр), переходят в состояние активированного комплекса АВ, который затем с выделением энергии превращается в продукт реакции АВ. На рис. 56 показана также энергия активации обратной реакции (Еа(обр)). Из рис. 56 следует, что:

1) тепловой эффект реакции не зависит от энергии активации;

2) тепловой эффект реакции равен разности энергий активации прямой и обратной реакции

ΔН = Еа(пр) - Еа(обр) (8-37)

3) энергия активации - это тепловой эффект процесса образования активированного комплекса из реагирующих веществ.

Если реакция протекает в несколько стадий, то каждой из этих стадий соответствует свой активированный комплекс и своя энергия активации. Промежуточные продукты, при этом образующиеся, называются интермедиатами.

Рис. 56. Кинетическая диаграмма реакции А + В = АВ.

Н –тепловой эффект реакции,

Еа(пр) – энергия активации прямой реакции,

Еа(обр) – энергия активации обратной реакции,

АВ – активированный комплекс

В качестве конкретного примера рассмотрим кинетику реакции

H2(г) + I2(г) = 2HI(г); ΔН = -10,2 кДж/моль (8-38)

кинетическая диаграмма которой приведена на рис. 57.

Рис. 57. Кинетическая диаграмма реакции H2(г) + I2(г) = 2HI(г)

Эта реакция протекает в две стадии, каждая из которых характеризуется определенной энергией активации. На первой стадии молекула иода поглощает энергию, переходя в состояние активированного комплекса II, который затем распадается на атомы иода

I2 = II = 2I; Ea(1) = 149 кДж/моль (8-39)

На второй стадии взаимодействия атомарный иод образует активированный комплекс с молекулой водорода, превращающийся затем в иодоводород

2I + H2 = IH2I = 2HI; Ea(2) = 18 кДж/моль (8-40)

Интермедиатом в этой реакции является атомарный иод. Если рассматриваемую реакцию осуществить, расщепляя на атомы и иод, и водород, а затем синтезируя из этих атомов иодоводород, энергия активации составила бы 581 кДж/моль, что значительно превышает сумму Еа(1) и Еа(2), равную 167 кДж/моль. Таким образом, второй путь энергетически невыгоден и не будет реализован.