Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
ТНУ им Вернадского . Пособие Шульгина энд Гюнне...doc
Скачиваний:
139
Добавлен:
08.11.2019
Размер:
7.31 Mб
Скачать

3.3.4. Сродство к электрону.

Сродство к электрону эл) - это энергетический эффект присоединения электрона к атомной частице. Как и энергия ионизации, сродство к электрону выражается либо в эВ/атом, либо в кДж/моль. К сожалению, эта характеристика атомов вплоть до настоящего времени с достаточной надежностью определена далеко не для всех элементов. Сродство к электрону относительно точно можно определить для неметаллов, образующих отрицательные ионы: сродство к электрону для такого элемента будет равно по абсолютной величине и обратно по знаку энергии ионизации однозарядного отрицательного иона. Для металлов, не образующих отрицательных ионов, сродство к электрону устанавливают приближенно косвенными и не всегда надежными методами. В результате для ряда металлов значения сродства к электрону до сих пор не определены с достаточной достоверностью, что существенно затрудняет анализ закономерностей изменения этого свойства элементов.

Можно ожидать, что возрастанию сродства к электрону будет способствовать увеличение эффективного заряда ядра и степени устойчивости электронных конфигураций, образующихся после присоединения к атому электрона. Можно предположить, что характер изменения сродства к электрону в периодах и подгруппах схож с изменением энергии ионизации с той разницей, что элементам с устойчивыми конфигурациями типа s2,p6,p3,d10,d5 и т.д., будут отвечать особо низкие значения Еэл, а наибольшие значения этого свойства будут присущи конфигурациям, на один электрон отстающим от устойчивых.

В табл. 4 сопоставлены значения Еэл для элементов II периода. Как следует из таблицы, нулевые и отрицательные значения сродства к электрону отвечают бериллию, азоту и неону, в атомах которых сформированы устойчивые конфигурации 2s2, 2p3 и 2p6; для остальных элементов прослеживается отчетливая тенденция к возрастанию Еэл с увеличением порядкового номера. Максимальное значение Еэл отвечает фтору - элементу, которому недостает одного электрона для приобретения устойчивой конфигурации благородного газа.

В А-подгруппах сродство к электрону уменьшается с увеличением порядкового номера элемента, хотя и не строго монотонно, что может быть проиллюстрировано данными табл. 7, в которой приведены значения Еэл элементов подгрупп IVA и VIA. Из общей закономерности здесь выпадают углерод и кислород - элементы, открывающие подгруппы. Причиной этого является то, что углерод и кислород - кайносимметричные элементы; вопрос о элементах-кайно­симметриках и особенностях их свойств будет рассмотрен в разделе 3.4.

Анализ изменения Еэл в В-подгруппах затрудняет отсутствие надежных данных о значениях сродства к электрону для многих d-элементов. Для некоторых В-подгрупп зарегистрировано увеличение сродства к электрону с возрастанием порядкового номера; для других подгрупп значение Еэл проходит через максимум (табл. 7).

3.3.5. Электроотрицательность.

Электроотрицательность элемента - это характеристика, определяющая способность атома притягивать к себе электроны, участвующие в образовании химических связей.

Существует ряд методов количественной оценки электроотрицательности, из которых наиболее популярным является метод, предложенный Л. Полингом и основанный на сопоставлении энергий связей между одинаковыми и различными атомами.

Пусть атомы А и В образуют гомоядерные двухатомные молекулы (А2 и В2) и гетероядерную молекулу АВ. Если электроотрицательности атомов А и В (А и В) равны, то общая электронная пара в молекуле АВ в равной мере принадлежит обоим атомам. Полинг предположил, что в этом случае энергия связи А-В (ЕАВ) должна равняться среднему геометрическому энергий связи в молекулах А2 и В2, а

Если же Е не равно нулю, то это свидетельствует о том, что электроотрицательности А и В не одинаковы. Связь между электроотрицательностями элементов и величиной Е выражается уравнением

Приняв электроотрицательность фтора равной 4, Полинг рассчитал относительные значения электроотрицательности для большинства химических элементов.

Очень простой прием расчета абсолютных значений электроотрицательности был предложен Р. Малликеном. По Малликену электроотрицательность элемента равна полусумме первой энергии ионизации и сродства к электрону для этого элемента

Однако, как уже указывалось, значения Еэл известны не для всех элементов, что ограничивает использование абсолютных величин электроотрицательности.

Сопоставление электроотрицательности элементов в периодах и подгруппах показывает, что она является периодическим свойством. В периодах значения электроотрицательности возрастают. Это обусловлено тем, что электроотрицательность тем больше, чем прочнее удерживает атом собственный электрон, мерой чего является энергия ионизации, и чем активнее он присоединяет электрон извне, мерой чего является сродство к электрону. В периодах же слева направо наблюдается тенденция к увеличению как I, так и Еэл. В табл. 4 и 5 приведены значения электроотрицательности элементов II и IV периодов.

В А-подгруппах по тем же причинам значения электроотрицательности с ростом порядкового номера убывают, хотя возможны и некоторые нарушения монотонности, связанные со вторичной периодичностью (табл. 6). В подгруппах d-элементов прогнозирование характера изменения электроотрицательности встречает серьезные затруднения. Как видно из табл. 7, значения электроотрицательности в В-подгруппах могут и уменьшаться (подгруппа IVB), и увеличиваться (подгруппа IB).