Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
органика.doc
Скачиваний:
94
Добавлен:
27.09.2019
Размер:
2.1 Mб
Скачать

6.5.1. Способы получения

1. Окисление органических соединений (углеводородов, спиртов, альдегидов, кетонов):

2. Гидролиз нитрилов

3. Действие двуокиси углерода на металлорганические соединения:

4. Оксосинтез. Взаимодействие олефинов с оксидом углерода (II) и водяным паром в присутствии катализаторов (тетракарбонил никеля, фосфорной кислоты и др.) при температуре 300–4000С и давлении 2–5∙107 Па дает смесь кислот нормального и изостроения:

5. Гидролиз тригалогенопроизводных, содержащих галоген у одного углеродного атома:

6. Ароматические кислоты могут быть получены окислением гомологов бензола:

7. Кроме того, ароматические карбоновые кислоты могут быть получены:

а) сплавлением ароматических сульфатов с формиатами и цианидами

б) реакцией ароматических соединений с галогенопроизводными угольной кислоты:

 

 

Физические свойства

В зависимости от строения карбоновые кислоты являются жидкостями или твердыми телами. Уменьшение длины углеродного скелета или появление дополнительной карбоксильной группы увеличивают растворимость кислоты в воде. На физические свойства кислот оказывают влияние ассоциация молекул вследствие образования водородных связей. Кислоты образуют более прочные водородные связи, чем спирты, так как связи О─Н в них в большей степени поляризованы. В твердом, жидком и даже в некоторой степени в парообразном состоянии карбоновые кислоты существуют в виде димеров:

Ароматические кислоты кипят при несколько более высоких и плавятся при значительно более высоких температурах, чем кислоты жирного ряда с тем же числом углеродных атомов. В водных растворах ароматические монокарбоновые кислоты обнаруживают большую степень диссоциации, чем кислоты жирного ряда: константа диссоциации бензойной кислоты 6,6∙10-5, уксусной кислоты 1,75∙10–5.

6.5.2. Химические свойства

Кислотный характер карбоновых кислот ярко выражен. Это объясняется взаимным влиянием атомов в карбоксильной группе: в ней электронная плотность смещена в сторону наиболее электроноакцепторного атома кислорода

Это ослабляет связь между кислородом и водородом и облегчает отделение иона водорода, т.е. диссоциацию кислоты.

Появление пониженной электронной плотности (δ+) на центральном углеродном атоме карбоксила приводит также к стягиванию σ–электронов соседней углерод-углеродной связи к карбоксильной группе и появлению пониженной электронной плотности (δ+) на α–углеродном атоме кислоты.

Сдвиг электронной плотности в молекуле недиссоциированной карбоновой кислоты понижает электронную плотность на гидроксильном атоме кислорода и повышает ее на карбонильном. Этот сдвиг еще больше увеличивается у аниона кислоты.

Результатом сдвига является полное выравнивание зарядов в анионе, названное мезомерией карбоксиланиона. Выравнивание электронной плотности приводит к выигрышу в энергии и для многих реакций является движущей силой, называемой энергией резонанса.

Наличие электрофильных заместителей в радикале, особенно в                   α–положении, кратных связей, или появление второй карбоксильной группы приводит к возрастанию кислого характера.

1. Карбоновые кислоты способны образовывать соли с металлами, их оксидами, гидроксидами, аммиаком:

2. Характерной реакцией карбоновых кислот является их способность образовывать со спиртами в присутствии минеральных кислот сложные эфиры – реакция этерификации:

Роль катализатора в реакции этерификации играют ионы водорода. Механизм реакции этерификации описывается следующим образом:

а) кислород карбонильной группы кислоты, захватывая протон, образует карбкатион I:

Карбкатион I присоединяет молекулу спирта за счет неподеленных электронных пар атома кислорода с образованием промежуточного тетраэдрического комплекса II, который способен обратимо распадаться с отщеплением воды и образованием нового карбокатиона сложного эфира III. При диссоциации последнего образуется сложный эфир, причем освобождается катализатор протон.

Большой интерес представляет вопрос кислота или спирт отщепляют гидроксил в реакциях этерификации.

С помощью «меченых атомов» (тяжелого изотопа кислорода 18О) было показано, что вода при этерификации образуется за счет водорода спирта и гидроксила кислоты:

Сложные эфиры получают также взаимодействием галогенацилов со спиртами и алкоголятами и нагреванием солей карбоновых кислот с галогеналкилами и действием спиртов на ангидриды кислот:

Сложные эфиры низших кислот и спиртов – жидкости с приятным запахом, в некоторых случаях напоминающих запах плодов. Например: изоамилацетат – грушевая эссенция.

Для сложных эфиров характерны реакции гидролиза и переэтерификации:

3. При действии галогенидов фосфора и серы на карбоновые кислоты образуются галогенангидриды кислот. При этом, как и в случае спиртов, гидроксил замещается галогеном:

Галогенангидриды кислот можно называть по кислоте и галогену, например бромангидрид масляной кислоты. Но чаще их называют по кислотному радикалу - ацилу. Перед названием ацила указывают галоген:

Низшие галогенангидриды – жидкости с весьма резким запахом, раздражающим слизистые оболочки.

При взаимодействии галагенангидридов с соединениями, содержащими атом металла или активный атом водорода, происходит замена его кислотным остатком – ацилом. Подобные реакции называются ацилированием и позволяют получить все производные кислот: ангидриды, кислоты, сложные эфиры, амиды, пероксиды и т.д.

Все эти реакции являются реакциями нуклеофильного замещения и идут в большинстве случаев по тетраэдрическому механизму.

4. При дегидратации кислот или при взаимодействии солей кислот с их галогенангидридами образуются ангидриды кислот:

Ангидриды низших кислот – легкоподвижные жидкости с острым запахом; в воде плохо растворимы или вовсе не растворимы. Кипят при более высокой температуре, чем соответствующие кислоты.

Ангидриды кислот обладают большой химической активностью и являются, как и галогенангидриды, хорошими ацилирующими агентами:

Большое значение имеет реакция получения фторангидрида.

5. При пропускании паров кислот вместе с аммиаком над дегидратирующими катализаторами получаются амиды кислот:

Амиды кислот получают также действием NH3 на галогенангидриды или ангидриды кислот или из аммонийных солей кислот:

Амиды кислот – кристаллические вещества (кроме жидкого амида муравьиной кислоты – формамида).

Амиды, за счет сопряжения свободной электронной пары азота с карбонильным кислородом, почти лишены основных свойств

Наиболее важным для амидов являются реакции:

а) гидролиза в кислой или щелочной среде

б) дегидратации в присутствии пентаоксида фосфора

О нитрилах кислот подробнее смотрите в главе «Азотсодержащие соединения».

6. Галогензамещенные кислоты могут быть получены при действии молекулярного хлора или брома на карбоновые кислоты. Наиболее легко         α-галогензамещенные производные кислот образуются из ангидридов и галогенангидридов: