Добавил:
kiopkiopkiop18@yandex.ru Вовсе не секретарь, но почту проверяю Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
4 курс / Фак. Терапия / ПРОТИВОВОСПАЛИТЕЛЬНАЯ_ТЕРАПИЯ_РЕВМАТИЧЕСКИХ_БОЛЕЗНЕЙ,_Е_Л_НАСОНОВ.pdf
Скачиваний:
3
Добавлен:
24.03.2024
Размер:
4.55 Mб
Скачать

Очень большое значение в развитии ревматических болезней придают ТФР-β, который обладает как провоспалительной, так и антивоспалительной активностью (W. A. Border и N. Noble, 1994). ТФР-бета стимулирует аккумуляцию моноцитов в тканях, регулирует функциональную активность лимфоцитов и макрофагов и стимулирует тканевой фиброз. Примечательно, что в зависимости от присутствия других цитокинов, ТФР β способен как подавлять, так и стимулировать рост и дифференцировку фибробластов. ТФРбета стимулирует синтез коллагена и фибронектина фибробластами, а ИФ-γ и ФНО-α оказывают противоположное действие. В присутствии тромбоцитарного фактора роста, эпидермального фактора роста и фактора роста фибробластов ТФР-β подавляет синтез коллагеназы и других нейтральных протеаз и увеличивает продукцию ингибиторов этих ферментов. Предполагается участие ТФР-β в развитии фиброза при ССД. Показано, что моноциты, инфильтрирующие кожу и ткани при ССД, содержат иРНК ТФР-бета. Кроме того, ТФР-β присутствует в зоне кожного фиброза недалеко от фибробластов. Важным свойством ТФР-β является способность модулировать некоторые активности моноцитов и лимфоцитов. Показано, что ТФР-β является самым мощным из известных в настоящее время хемотаксических агентов для моноцитов, вызывает усиление экспрессии FcIII-рецепторов, но ингибирует синтез цитокинов, подавляет ИЛ-1-индуцируемую пролиферацию Т- лимфоцитов, рост и синтез иммуноглобулинов В-лимфоцитами, ингибирует активность ЕК-клеток. С одной стороны, ТФР-β, вызывая аккумуляцию моноцитов, отек, покраснение и гиперплазию синовиальных фибробластов, индуцирует развитие воспаления, а с другой — обладает способностью снижать экспрессию HLA-Dr и синтез кислородных радикалов моноцитами.

1.10.5. Регуляция цитокиновой сети

Цитокиновая сеть рассматривается как саморегулирующаяся система, основу функционирования которой составляют продукция специфических антагонистов цитокиновых рецепторов, растворимых цитокиновых рецепторов, антител к цитокинам, связывание цитокинов с некоторыми ингибиторными белками и, наконец, противоположные эффекты различных цитокинов на регуляторные компоненты, обеспечивающие развитие иммунного ответа и воспаления (J-M. Dayer и H. Fenner, 1992).

Биологическая активность провоспалительных цитокинов зависит от соотношения между уровнем синтеза цитокинов и ингибирующих молекул. Описано несколько ингибиторов ИЛ-1. К ним относится специфический антагонист ИЛ-1 рецепторов (ИЛ-1ра), который синтезируется моноцитами, макрофагами и нейтрофилами и имеет структурное сходство с ИЛ-1; он обладает способностью связываться ИЛ-1 рецепторами, но не индуцирует развитие биологических эффектов, характерных для ИЛ-1 (С. А. Dinarello, 1991; W. P. Arend, 1991). В различных экспериментальных системах было показано, что ÈË-1ðà блокирует провоспалительные эффекты ИЛ-1 (C. A. Dinarello и R. C. Thompson, 1991). ÈË-1ðà эффективно подавляет развитие экспериментального коллагенового артрита, но не влияет на течение антигениндуцированного артрита (P. Wooley и соавт., 1993). Имеются данные о положительном влиянии ÈË-1ðà при септическом шоке, РА и других заболеваниях. Недавно было показано, что при РА наблюдается дефицит синтеза ÈË-1ðà синовиоцитами по сравнению с общей продукцией ИЛ-1, что может иметь значение в прогрессировании суставной деструкции, индуцированной ИЛ-1 (G. S. Firestein и соавт., 1994). Предполагается, что антивоспалительная активность ИЛ-1ра связана с подавлением ИЛ-1 индуцированного синтеза ИЛ-8. Примечательно, что синтез ÈË-1ðà усиливается ИЛ-4, который, как уже отмечалось, обладает способностью подавлять синтез самого ИЛ-1 (E. Vannier и соавт., 1992).

Другой механизм саморегуляции цитокиновой сети обусловлен продукцией растворимых цитокиновых рецепторов, которые, связываясь с цитокинами в кровяном русле, блокируют их активность (R. FernandezBotran, 1991). Описаны растворимые формы ИЛ-1, ИЛ-2, ИЛ-4, ИЛ-6 и ФНО рецепторов. Например, ФНО-α и ФНО-β связываются с двумя высокоаффинными клеточными поверхностными рецепторами с молекулярной массой соответственно 55 kD и 75 kD, экспрессирующимися на мембранах практически всех клеток, включая Т-лимфоциты, макрофаги и нейтрофилы. Растворимые формы ФНО-рецепторов (рФНО-Р) представляют собой белки (30 kD). Увеличение уровня рФНО-Р обнаружено в сыворотке и синовиальной жидкости больных РА, оно коррелирует с воспалительной активностью заболевания. При остеоартрозе также отмечено увеличение уровня рФНО-Р в сыворотке, но не в синовиальной жидкости. Предполагается, что определение концентрации рФНО-Р может иметь значение для оценки активности процесса и диагностики РА.

Кроме того, существует несколько ярких примеров противоположного действия различных цитокинов на одни и те же иммуновоспалительные процессы. Например, ФНО-β в некоторых случаях проявляет антагонистическую активность с ИЛ-1-α и ФНО-α, a ÒÔÐ-β действует с противоположной направленностью с ИФ-γ и ФНО-α. ИЛ-4 и ИЛ-10 блокируют синтез ИЛ-1, ФНО-α, ИЛ-6 и других цитокинов моноцитами. Наконец, в сыворотках нормальных индивидуумов обнаружены антитела к цитокинам, включая ИЛ-1-α, ФНО-α и ИЛ-6, которые блокируют биологические эффекты цитокинов (K. Bendtzen и соавт., 1990). Эффекты многих цитокинов блокируются при связывании с α-2 макроглобулином.

1.11. Система комплемента

Система комплемента, состоящая из более чем 20 биохимически различающихся белков, играет важную роль в развитии воспаления и иммунном ответе (S. K. Law, 1988). Компоненты комплемента присутствуют в

кровяном русле в виде неактивных предшественников (зимоген). При воздействии различных иммунологических и неиммунологических стимулов отдельные компоненты комплемента вступают в серию взаимодействий с активирующими субстанциями и друг с другом, что приводит к образованию биологически активных форм, обладающих мощной провоспалительной и литической активностью. Существуют два основных пути активации комплемента: классический и альтернативный, которые функционируют независимо друг от друга. К белкам классического пути активации комплемента относятся Clq, C1s, C1r, C4, C2, СЗ; белки альтернативного пути включают пропердин, факторы В, D и С3. С3-компонент, являясь одним из основных гликопротеинов плазмы (присутствует в сыворотке в концентрации 1.3 мг/мл), занимает центральное место в обоих путях активации комплемента. Белки С5-С9 обозначаются как терминальные компоненты (мембраноатакующий комплекс) и также являются общими для обоих путей, осуществляют лизис и повреждение клеток-мишеней. Контроль за активацией комплемента осуществляется семью контролирующими белками, основными из которых являются C1INH, I (C3bINA), Н (В1Н), С4ВР, а также мембранными белками и клеточными рецепторами. Активация классического пути происходит при взаимодействии Clq с иммунными комплексами, содержащими антитела IgG1, IgG2, IgG3, IgM или в отсутствие антител под воздействием различных полианионов, некоторых полисахаридов, вирусных мембран и других субстанций. Активация альтернативного пути может происходить в отсутствие антител за счет воздействия липополисахаридов бактерий, вирусов и вирусинфицированных клеток.

Анафилотоксины (С3а, С4а, С5а) являются биологически активными фрагментами компонентов комплемента (С3, C4, С5), принимающими участие в развитии воспаления и вазоспазме. Связываясь со специфическими рецепторами, экспрессирующимися на мембране различных клеток, они индуцируют клеточную активацию (хемотаксис и активацию фагоцитов, синтез цитокинов и др.).

У человека описано 2 полиморфных тесно связанных структурных локуса C4, которые называются С4А и С4В и располагаются на коротком плече 6-й хромосомы. Каждый из этих локусов имеет несколько экспрессирующихся аллелей (в настоящее время выявлено 13 аллельных продуктов C4 локуса и 21 аллельный продукт С4В локуса), а также неэкспрессирующихся (нулевых). Наличие неэкспрессирующихся аллелей С4А и С4В определяет широкие колебания концентрации C4 в сыворотке, предрасполагает к развитию аутоиммунных заболеваний, включая СКВ, лекарственную волчанку, ССД, РА, синдром Шегрена, склерозирующий панэнцефалит, IgA-иммунодефицит. Полагают, что нулевой аллель С4А создает предпосылки для нарушения клиренса иммунных комплексов и, таким образом, играет важную роль в развитии аутоиммунных и иммунокомплексных заболеваний человека. Подавление C4 гидралазином и изониазидом может иметь значение в развитии лекарственной волчанки.

1.12. ПГ, Л Т и другие медиаторы воспаления

ПГ, открытые независимо друг от друга M. W. Goldblatt и U. S. von Euler в 1934 году, являются естественными медиаторами воспаления (таблица 1.8.). Все основные типы клеток, принимающие участие в развитии воспалительных и иммунных реакций, способны образовывать ПГ, однако наиболее важными источниками ПГ, вероятно, являются моноциты и макрофаги.

Таблица 1.8. Роль ПГ в развитии основных признаков воспаления (J. J. F. Belch, 1989)

Признаки

Роль ПГ

 

 

Покраснение (Rubor)

ПГ обладают вазодилататорной активностью

Отек (Tumor)

Большинство ПГ проявляют синергизм с другими медиаторами, вызывающими

 

отек

Боль (Dolor)

ПГ проявляют синергизм с брадикинином и гистамином в отношении

 

гипералгезии и боли

Покраснение (Calor)

ПГ индуцируют повышение температуры

Нарушение функции (Functio ПГ изменяют функциональную активность клеток, принимающих участие в laesia) развитии воспаления

Арахидоновая кислота является С20 полиненасыщенной органической жирной кислотой, принадлежащей к группе органических кислот с длинными водородными цепочками. Арахидоновая кислота присутствует в мембранных фосфолипидах нескольких классов, но особенно широко она представлена в составе фосфатидилхолина (лейцитин). К продуктам метаболизма арахидоновой кислоты, образующимся в процессе взаимодействия кислорода с этой полиненасыщенной жирной кислотой, относятся ПГ, тромбоксаны, простациклин, эндопероксиды ПГ, гидропероксиэйкозатетрановые кислоты (НРЕТЕ), гидроксиэйкозатетрановые кислоты (НЕТЕ), ЛТ и др. Все эти вещества, имеющие общее название

"эйкозаноиды", т.е. производные эйкозатетраноиковой (арахидоновой) кислоты, принимают участие в развитии воспалительных реакций. ПГ представляют собой полиненасыщенные жирные кислоты, имеющие в молекуле 20 атомов углерода. В соответствии со структурой они разделены на семейства, члены которых обладают разными биологическими свойствами. Семейства обозначаются буквами (А, В, Е, F и т.д.) и дифференцируются в зависимости от числа двойных связей в боковых цепочках. Продукция ПГ связана с высвобождением арахидоновой кислоты под воздействием различных ферментов (фосфолипазы А2, фосфолипазы С, диацилглицерола, циклооксигеназы),

Существуют несколько путей метаболизма арахидоновой кислоты, в каждом из которых функции катализаторов выполняют определенные ферменты. Один из этих путей — циклооксигеназный — обеспечивает синтез эндопероксидов ПГ, самих ПГ, простациклина и тромбоксана. Другой путь — липоксигеназный — связан с продукцией НРЕТЕ, НЕТЕ и ЛТ.

Эйкозаноиды не хранятся в клетках, но быстро синтезируются в ответ на различные стимулы (гормоны, химические медиаторы, повреждение клеток и др.), претерпевают очень быстрый метаболизм и превращение в неактивные продукты и выводятся из кровообращения. Все клетки в той или иной степени обладают способностью синтезировать эйкозаноиды, однако их специфические формы преимущественно образуются в клетках различных типов. Например, тромбоциты являются основным источником тромбоксана À2, а ЭК продуцируют простациклин I2.

Для стимуляции синтеза ПГ требуется активация фосфолипазы, которая обеспечивает образование достаточного количества свободной арахидоновой кислоты для действия ферментов арахидонового каскада: циклооксигеназы и липоксигеназы. Циклооксигеназа (ЦОГ), известная также как PGH эндопероксид синтетаза, бифункционально связанный с мембраной гемопротеин, располагающийся вблизи места высвобождения арахидоновой кислоты из мембранных фосфолипидов и имеющий двойную каталитическую активность. ЦОГ катализирует оксигенацию арахидоновой кислоты, т.е. присоединение молекулы кислорода к арахидоновой кислоте в положении 9, 11 è 15, что приводит к конверсии арахидоновой кислоты в ПГG2. За счет своей пероксидазной активности ЦОГ конвертирует ПГG2 в ПГН2, которые являются предшественниками всех типов ПГ и тромбоксана.

Установлено существование по крайней мере двух тесно связанных изоферментов ЦОГ ( PGH-синтетазы): ЦОГ-1 и ЦОГ-2. (I. Appleton и соавт., 1994). Эти изоферменты идентичны на 60% и имеют приблизительно одинаковую способность конвертировать арахидоновую кислоту в ПГ, однако существенно различаются по механизмам регуляции и экспрессии активности (таблица 1.9.)

Таблица 1.9. Сравнительная характеристика ЦОГ-1 и ЦОГ-2 (по D. L. DeWitt и соaвт., 1993)

Свойства

ЦОГ-1

ЦОГ-2

 

 

 

Регуляция

Общая

Локальная

Ген

2.8kb иРНК

4 kb иРНК

Выраженность экспрессии

Увеличение в 2-4 раза

Увеличение в 10-80 раз

Тканевая экспрессия

Тромбоциты, ЭК, желудок,

Предстательная железа, мозг,

 

почки, другие ткани

активированные моноциты и фибробласты,

 

 

синовиоциты; возможно, экспрессируются в

 

 

других тканях при их стимуляции

 

 

гормонами, цитокинами, факторами роста

Эффект ГК

Отсутствует

Предполагаемая роль фермента

Синтез ПГ, регулирующих

 

физиологические функции

 

желудка, почек и сосудов

Выраженное подавление экспрессии

Синтез ПГ, участвующих в развитии воспаления, контроле клеточного митогенеза

ЦОГ-1 рассматривается как "конституциональный" фермент, экспрессирующийся во всех клетках, хотя степень экспрессии в различных тканях может быть неодинаковой. Предполагается, что синтез ЦОГ-1 кодируется генами (housekeeping), регулирующими продукцию ПГ в ответ на стимуляцию гормонами, участвующими в обеспечении нормального клеточного цикла.

ЦОГ-2 в физиологических условиях присутствует в тканях в крайне низкой концентрации, но на фоне воспаления ее уровень резко возрастает. Таким образом, ЦОГ-2 принимает участие в продукции ПГ, вовлеченных в процессы воспаления, митогенеза и клеточной пролиферации. Установлено, что одним из мощным индукторов гена ЦОГ является ИЛ-1 (J. A. M. Maier и соавт., 1990). Имеются данные об индукции ЦОГ-2 в ЭК микрососудов синовиальной оболочки под действием ИЛ-1 (A. Szczepanski и соавт., 1994). При этом важным элементом регуляции экспрессии ЦОГ-2 является высокая чувствительность к ГК, которые полностью подавляют активность ЦОГ-2. Это позволяет рассматривать ген, кодирующий ЦОГ-2, в качестве

представителя семейства ГК-чувствительных воспалительных генов.

В отличие от ПГ, которые вырабатываются многими клетками, ЛТ синтезируются преимущественно клетками, принимающими участие в развитии воспаления, такими, как нейтрофилы, моноциты/макрофаги, тучные клетки, базофилы и эозинофилы. Продукция ЛТ определяется активностью ферментов, отличающихся от ЦОГ, которые получили название "липоксигеназы". Последние также катализируют включение молекулы кислорода в специфические связи полиненасыщенных жирных кислот, главным образом арахидоновой (B. Samuelsson и соавт., 1987). Основной формой липоксигеназы является 5-липоксигеназа, которая добавляет кислород в 5-е положение арахидоновой кислоты. Это приводит к образованию 5- гидропероксиэйкозатетраеновой кислоты (5-НРЕТЕ). Этот же фермент катализирует образование циклической формы 5,6 эпоксида-ЛТА5. ЛТА5 является предшественником лейкотриенов двух важных классов: дегидроксильного производного ЛТВ4, ЛТС4, ЛТD4 и ЛТЕ4. Последние три субстанции сейчас называются сульфопептидами ЛТ, а ранее определялись как медленно реагирующая субстанция анафилаксии. Установлено, что продукты 5-липоксигеназного пути играют очень важную роль в развитии воспаления (таблица 1.10.).

Таблица 1.10. Основные биологические эффекты ЛТ

ËÒÂ4

ËÒÑ4, D4, Е4

 

 

Активация лейкоцитов:

Сокращение гладкой мускулатуры

хемокинез

Венозный выпот

хемотаксис

 

прилипание

 

агрегация

 

дегрануляция

 

Усиление экспрессии СЗb рецепторов

 

Супрессия функции лимфоцитов

 

 

 

ËÒÂ4 является очень мощным хемоаттрактантом лейкоцитов, способствует прилипанию лейкоцитов к эндотелию, активирует секрецию кислородных радикалов и протеолитических ферментов нейтрофилами. Сульфидопептиды ЛТ вызывают сокращение гладкой мускулатуры сосудов, дыхательной и кишечной тканей. При этом индуцированная этими ЛТ вазоконстрикция ассоциируется с увеличением сосудистой проницаемости. Обладая способностью вызывать сокращение бронхов и бронхиальную секрецию, ЛТ играют важную роль в патогегезе бронхиальной астмы. Кроме того, сульфидопептиды ЛТ дают отрицательный инотропный и аритмогенный эффекты на миокард, стимулируют сокращение мезангиальных клеток и др.

По современным представлением, эйкозаноиды рассматриваются не как медиаторы, а как регуляторы воспаления, а также иммунных реакций (R. P. Phipps и соавт., 1991; R. B. Zurier, 1990). Различные формы ПГ (ПГЕ1, ПГЕ2 и ПГI2) связываются с различными типами клеточных рецепторов и нередко проявляют разнонаправленную биологическую активность. При определенных условиях и в зависимости от концентрации они могут как подавлять, так и стимулировать Т- и В-клеточный иммунные ответы, что опосредуется их влиянием на синтез цитокинов и цитокиновых рецепторов. Известно, что ПГ являются регуляторами концентрации внутриклеточного цАМФ (J. S. Goodwin и соавт., 1981). При этом ПГЕ2, связываясь с ПГЕспецифическими рецепторами, ассоциированными с G-белком, увеличивают концентрацию внутриклеточного цАМФ, что в свою очередь оказывает регулирующее воздействие на экспрессию иРНК цитокинов (T. J. Novae и E. V. Rothenberg, 1990). Имеются данные о том, что ПГЕ2 подавляет продукцию Т1 цитокинов, синтезирующихся Th1 лимфоцитами, и не влияет на образование цитокинов, продуцируемых Тh2лимфоцитами (M. Betz и В. S. Fox, 1991; K. Gold и соавт., 1994). Высказано предположение о том, что ПГЕ2 может проявлять антивоспалительные эффекты при заболеваниях с Thl-цитокиновым профилем, в то время как при заболеваниях, при которых доминирует Тh2-тип иммунного ответа (например, при РА), ПГЕ2 обладает провоспалительной активностью.

1.13. ФАТ

ФАТ считается единственным фосфолипидом, обладающим очень мощной биологической активностью (G. Camussi и соавт., 1990). Он принадлежит к классу фосфолипидных эфиров, имеющих О-алкиловую эфирную последовательность в положении 1 молекулы глицерина и рассматривается как важный медиатор немедленной гиперчувствительности. ФАТ синтезируется нейтрофилами, макрофагами, тромбоцитами. Он вызывает агрегацию тромбоцитов, усиливает хемотаксис, стимулирует высвобождение протеолитических