Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Электроника.pdf
Скачиваний:
1069
Добавлен:
12.03.2015
Размер:
11.64 Mб
Скачать

Рассмотрим принцип работы панели подробнее. В каждом из изолированных каналов возбуждается свой разряд, приходящийся на соответствующий анод сканирования. Перенос разряда осуществляется с помощью трёхфазной системы, соединённой с группами катодов.

Перемещение разрядов от нулевого катода к последнему происходит одновременно во всех каналах панели, а по достижении последнего катода с помощью импульса, подаваемого на катод гашения, осуществляется одновременный сброс разрядов. Через инжекционные отверстия осуществляется диффузия заряженных частиц, метастабилей, фотонов из сканирующих промежутков в индикаторные ячейки, в результате чего существенно снижается напряжение зажигания разряда, аналогично тому, как в тиратронах тлеющего разряда. Таким образом сканирующие разряды последовательно воздействуют на все столбцы индикаторных ячеек, подготавливая их зажигание. Перенос сканирующего разряда напоминает развёртку луча в ЭЛТ, с тем лишь отличием, что оно происходит по всем строкам одновременно. Свечение сканирующих разрядов оператор фактически не видит.

Если на аноды индикации подавать положительные импульсы напряжения, то зажигаются только те индикаторные ячейки, которые в этот момент подготовлены сканирующими разрядами. Горение индикаторного разряда в ячейке возможно лишь в течение времени, не превышающего

продолжительности устойчивого состояния схемы управления в одном из рабочих положений. Воспроизводимое изображение в виде цифр, букв синтезируется из группы светящихся точек, названной условно знакоместом.

Размер символа и толщина его обводки определяются шагом ячеек в строке и их диаметром. Воспроизводимое изображение является динамическим,

поэтому для получения немерцающей картины оно должно периодически обновляться с частотой кадровой развёртки не менее 30 Гц.

7.6.2. ГИП переменного тока

Панели постоянного тока, а также панели с самосканированием не могут полностью запоминать информацию, что ограничивает размеры их индикаторного поля и требует внешнего запоминающего устройства.

Запоминание информации значительно проще осуществляется в газоразрядной панели переменного тока, где роль токоограничивающего элемента выполняет проходная ёмкость диэлектрического слоя, отделяющего электроды от газового промежутка. Панель, конструкция которой схематически показана на рис. 7.7, состоит из двух толстых стеклянных пластин, с внутренней стороны которых расположены системы взаимно перпендикулярных металлических электродов, покрытых изолирующим слоем диэлектрика, который защищён окисной плёнкой от действия газового разряда.

132

Зазор между пластинками фиксируется с помощью прокладок и заполняется газом под давлением, близким к атмосферному. Рассмотрим принцип действия панели.

Между системой вертикальных и горизонтальных электродов приложено переменное напряжение Uоп, амплитуда которого недостаточна для зажигания, но достаточна для поддержания разряда. Для возбуждения

разряда в данной ячейке на соответствующую пару вертикальных и горизонтальных электродов подаются во временной интервал импульсы записи (Uзап), суммарная амплитуда которых достаточна для зажигания (двухкоординатная выборка).

Рис. 7.7. Схема ГИП переменного тока: 1 – стеклянные пластины, 2 – горизонтальные электроды, 3 – управляющие электроды, 4 – слой диэлектрика, 5 – вертикальные электроды

В результате прохождения разрядного тока на конденсаторной структуре, представляющей собой изолирующие слои стекла на проводниках, возникают электрические заряды, создающие напряжение Uс с полярностью, противоположной Uзап, возбудившей разряд. Возникновение напряжения на структуре приводит к самогашению разряда, т.е. к ограничению длительности протекания разрядного тока. Так как время стекания возникших на диэлектрике зарядов велико, то в следующий временной интервал созданное им Uc суммируется с изменившим знак Uоп, и напряжение, приложенное к ячейке, оказывается достаточным для зажигания. Этот процесс повторяется во времени.

Таким образом, ячейка оказывается бистабильным элементом, так как

при приложении одинакового опорного напряжения она может находиться в

133

одном из двух состояний: проводящем или непроводящем. Для гашения разряда на ячейку подают стирающий импульс Uст, который, вызывая частичный разряд конденсатора, понижает напряжение на нём, вследствие чего повторные зажигания разряда в ячейке становятся невозможными. Для

полного стирания изображения можно отключить опорное напряжение на время, достаточное для рассасывания накопленного в диэлектрических слоях заряда.

7.6.3. Получение полутоновых изображений на ГИП

Описанные выше режимы работы газоразрядных панелей используются при воспроизведении однотонных монохромных изображений. При

воспроизведении полутоновой информации важной проблемой становится модуляция яркости. В ГИП с внешней адресацией и ГИПС используют амплитудно-импульсный и широтно-импульсный методы модуляции яркости. При широтно-импульсном методе через включённую ячейку проходит максимальный ток, а время её включения меняется пропорционально яркости. Этим методом трудно получить большое число градаций яркости из-за ограниченного диапазона регулировки разрядного тока. Поэтому в названных панелях чаще применяется комбинированный амплитудно-широтно-импульсный метод модуляции.

При модуляции яркости в ГИП переменного тока возникают значительные трудности, связанные с тем, что ячейки панели могут находиться в одном из двух возможных состояний (включено или выключено). Поэтому для получения градаций применяются различные обходные методы. Пространственные методы позволяют использовать полное запоминание информации на индикаторном поле, чем обеспечивается достаточная яркость, но ухудшается разрешающая способность. Временные методы связаны с необходимостью введения внешних запоминающих устройств, в которых хранится информация о длительности включения (т.е. числе перезажиганий) каждой ячейки. Но при этом методе происходит снижение яркости.

Более удачным является метод временной модуляции яркости с полным или частичным кадровым запоминанием.

Вбольшей части существующих ГИП излучение создаётся областью отрицательного свечения разряда. При этом неон даёт оранжево-красное свечение. Для получения разных цветов и многоцветного изображения в качестве газового наполнения используются смеси на основе ксенона, в которых основная часть излучения приходится на УФ область спектра. Для преобразования УФ излучения в видимое используются фото или, иногда, катодолюминофоры. При этом целесообразно вместо тлеющего свечения использовать положительный столб разряда, который более богат УФ излучением.

Взаключение можно отметить, что ГИП один из наиболее перспективных электронных приборов для отображения информации.

134

Быстрое развитие универсальных ГИП делает их серьёзным конкурентом ЭЛТ при отображении больших массивов буквенно-цифровой, графической и полутоновой информации. С помощью ГИП получено цветное телевизионное изображения с характеристиками, близкими к достигаемым в

устройствах с ЭЛТ.

 

 

 

Так, одна из

отечественных

компаний

Инкотекс,

(ООО Микроэлектронные

системы, при

НИИ ядерной

физики МГУ

им. М.В. Ломоносова), представила на выставке CeBIT 2002 ряд цветных

наборных плазменных экранов коллективного пользования с большой диагональю и качеством телевизионного или компьютерного изображений.

Рис. 7.8. Наборная плазменная панель диагональю более 3-х м

Экраны представляют собой новое поколение подобных устройств, основаны на разряде переменного тока, способны отображать полноцветное динамическое видео изображение, ранее не выпускались как в СНГ, так и за рубежом.

По сравнению с выпускавшимися ранее экранами на разряде постоянного тока, новинки имеют существенно более высокую яркость, контрастность и долговечность. В частности, типичная яркость панели на постоянном токе 100 – 150 кд/м2, яркость экранов от "Инкотекс" на разряде переменного тока 400 – 600 кд/м2, что в два раза превосходит ближайшие зарубежные аналоги. Ресурс панелей на постоянном токе порядка тысячи часов, на переменном токе десятки тысяч часов.

Основными достоинствами плазменных цветных экранов, по сравнению с основанными на других технологиях, являются: возможность показа

135