Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Электроника.pdf
Скачиваний:
1069
Добавлен:
12.03.2015
Размер:
11.64 Mб
Скачать

Рис. 2.14. Схема отражательного клистрона:

1 – катод; 2 – резонатор; 3 – отражательная пластина; 4 – резонаторные сетки; 5 – выходная петля связи; 6 – управляющая сетка

Электронный поток проходит через резонатор дважды в прямом направлении как через управляющий и в обратном как через выходной.

При этом электронный сгусток возвращается в резонатор в момент максимального тормозящего поля. Отражательные клистроны используются как маломощные генераторы СВЧ колебаний, их КПД обычно составляет несколько процентов.

2.6.3. Лампы бегущей и обратной волны (ЛБВ и ЛОВ)

Резонансные системы узкополосны, т.е. имеют малую полосу пропускания (до 1% от резонансной частоты). Одним из способов

увеличения полосы пропускания является отказ от резонансной системы и включение зазора в согласованную с нагрузкой передающую линию. Такое согласование может быть достигнуто лишь при большом числе зазоров,

причём электронные сгустки должны проходить каждый зазор в фазе максимального тормозящего поля. Это означает, что фазовая скорость волны должна быть примерно равна скорости электронов (электроны должны находиться в синхронизме с волной). Так как скорость электронов много меньше скорости света, передающая линия, соединяющая зазоры, должна обладать свойствами линии задержки. В качестве линии задержки используют замедляющие системы (спираль, гребёнка и т.д.).

Принцип действия ЛБВ (рис. 2.15) основан на длительном

взаимодействии электронного потока с полем бегущей электромагнитной волны, распространяющейся вдоль замедляющей системы. Электронный поток, сформированный электронной пушкой и фокусирующей системой,

взаимодействует с продольной составляющей электромагнитного поля и модулируется по скорости.

33

Рис. 2.15. Схема лампы бегущей волны:

1 – катод; 2 – замедляющая система; 3 – магнит; 4 – входное и выходное устройства; 5 – коллектор электронов

По мере перемещения потока скоростная модуляция трансформируется в модуляцию по плотности. При этом параметры замедляющей системы и ускоряющее напряжение подбираются так, что электронные сгустки

сосредотачиваются в областях тормозящего поля и будут передавать энергию электромагнитной волне. В результате амплитуда волны по мере распространения вдоль замедляющей системы будет возрастать.

Начальное соотношение скоростей электронов и волны подбирается таким образом, чтобы за время прохождения замедляющей системы электронные сгустки не выходили из области тормозящего поля. При

наличии внутренней или внешней обратной связи ЛБВ может быть использована как автогенератор.

В отличие от ЛБВ, в лампах обратной волны (рис. 2.16) используется

взаимодействие электронного потока с одной из обратных гармоник волны в замедляющей системе. При этом направление фазовой и групповой скорости волны противоположны. Движение электронного потока совпадает с направлением фазовой скорости, поэтому вывод энергии располагается со стороны электронной пушки.

Рис. 2.16. Схема лампы обратной волны:

1 – катод; 2 – выходное устройство; 3 – замедляющая система; 4 – поглощающая вставка; 5 – коллектор электронов; 6 – магнит

34

Распространение энергии навстречу электронному потоку создаёт внутреннюю положительную обратную связь между ними, что способствует группированию электронов и возникновению автоколебаний.

2.6.4. Лампы со скрещенными полями

Рассмотренные выше лампы, в которых продольное магнитное поле служит лишь для фокусировки электронного пучка, относятся к приборам типа О. Магнитное поле непосредственно для осуществления усиления и генерации в этом случае не является необходимым. Использование скрещенных полей (когда высокочастотное электрическое поле перпендикулярно внешнему электростатическому или магнитному полю)

существенно меняет характер движения электронов и их взаимодействие с высокочастотным полем. Поперечное электростатическое поле используется в лампах типа Е, поперечное магнитное поле в лампах типа М. Большое распространение получили лампы типа М.

2.6.5. Усилитель на ЛБВ типа М

Рассмотрим работу ЛБВ типа М (рис. 2.17, 2.18). Электроны, эмитированные катодом 3, под действием электрического поля 1 и внешнего магнитного поля В, перпендикулярного плоскости чертежа, двигаются по

циклоиде и на вершине первой петли вводятся в пространство взаимодействия, образованное замедляющей системой 6 и основанием (ложным катодом) 4. Относительно катода основание находится под нулевым или отрицательным потенциалом, а замедляющая система 6 и коллектор 2 – под положительным. При отсутствии высокочастотного поля в

пространстве взаимодействия электроны образуют почти прямолинейный плоский пучок 5, попадающий на коллектор. Если на вход подаётся высокочастотный сигнал и в замедляющей системе возбуждается волна, синхронизованная с пучком, то пучок отдаёт энергию ВЧ полю и амплитуда волны возрастает. Так как при этом скорость электронов уменьшается, возрастает радиус R, отвечающий их движению по циклоиде и часть электронов оседает на замедляющей системе.

Рис. 2.17. Траектории движения электронов в приборах с поперечным

магнитным полем

35

Рис. 2.18. Схема лампы бегущей волны типа М:

УЭ ускоряющий электрод; К` – коллектор электронов; К катод; ХК основание (холодный катод); П поглотитель;

ЗС замедляющая система

Высокочастотное поле в пространстве взаимодействия имеет как продольную, так и поперечную составляющие. Электроны, попадающие в область ускоряющего поля бегущей волны, увеличивают свою энергию.

Связанное с этим уменьшение радиуса их движения по циклоиде приводит к попаданию электронов на основание и уходу из пространства взаимодействия. В то же время электроны, оказавшиеся в "правильной фазе" с полем бегущей волны, т.е. в области задерживающего потенциала, отдавая энергию полю, постепенно приближаются к замедляющей системе. Скорость их движения вдоль замедляющей системы при этом меняется, так как высокочастотному полю передаётся потенциальная энергия электронов, определяемая положением в электростатическом поперечном поле. Поэтому сохраняется синхронизм движения этих электронов и волны. Поскольку электроны, приближающиеся к замедляющей системе, попадают в более сильное поле, чем удаляющиеся от неё, в целом пучок отдаёт полю больше энергии, чем отбирает от него.

2.6.6. Генератор на ЛОВ типа М замкнутой конструкции (карсинотрон)

Свернув в кольцо замедляющую систему плоской ЛБВ типа М, мы получим лампу замкнутой конструкции. При этом сама замедляющая система остаётся разомкнутой. Изменение же формы лампы позволяет, прежде всего, уменьшить её линейные размеры. Процессы в такой лампе практически не отличаются от описанных выше. В конструкции, изображённой на рис. 2.19, используется взаимодействие электронного потока (в общем случае электроны движутся по эпициклоидам) с одной из обратных гармоник бегущей волны, распространяющейся в кольцеобразной замкнутой системе. Как и ЛОВ типа О, лампа обратной волны типа М используется преимущественно в качестве генератора.

36