Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
ATmega128 datasheet.pdf
Скачиваний:
12
Добавлен:
09.02.2015
Размер:
6.34 Mб
Скачать

ATmega128

Signature Bytes

Calibration Byte

the EESAVE fuse which will take effect once it is programmed. The fuses are also latched on power-up in normal mode.

All Atmel microcontrollers have a three-byte signature code which identifies the device. This code can be read in both serial and parallel mode, also when the device is locked. The three bytes reside in a separate address space.

For theAtmel® AVR® ATmega128 the signature bytes are:

1.$000: $1E (indicates manufactured by Atmel)

2.$001: $97 (indicates 128Kbyte Flash memory)

3.$002: $02 (indicates ATmega128 device when $001 is $97)

The ATmega128 stores four different calibration values for the internal RC Oscillator. These bytes resides in the signature row high byte of the addresses 0x000, 0x0001, 0x0002, and 0x0003 for 1MHz, 2MHz, 4MHz, and 8MHz respectively. During Reset, the 1MHz value is automatically loaded into the OSCCAL Register. If other frequencies are used, the calibration value has to be loaded manually, see “Oscillator Calibration Register – OSCCAL” on page 41 for details.

289

2467X–AVR–06/11

Parallel

Programming

Parameters, Pin

Mapping, and

Commands

Signal Names

ATmega128

This section describes how to parallel program and verify Flash Program memory, EEPROM Data memory, Memory Lock bits, and Fuse bits in the Atmel® AVR®ATmega128. Pulses are assumed to be at least 250ns unless otherwise noted.

In this section, some pins of the ATmega128 are referenced by signal names describing their functionality during parallel programming, see Figure 135 and Table 120. Pins not described in the following table are referenced by pin names.

The XA1/XA0 pins determine the action executed when the XTAL1 pin is given a positive pulse. The bit coding is shown in Table 122.

When pulsing WR or OE, the command loaded determines the action executed. The different Commands are shown in Table 123.

Figure 135. Parallel Programming

 

 

 

 

 

 

 

 

 

 

 

 

+5V

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

RDY/BSY

 

 

 

 

PD1

VCC

 

 

 

 

 

 

OE

 

 

 

 

PD2

 

 

 

 

 

 

 

 

 

 

 

 

+5V

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

WR

 

 

 

PD3

AVCC

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

BS1

 

 

 

 

PD4

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

XA0

 

 

 

PD5

PB7 - PB0

 

 

 

DATA

 

 

 

 

 

XA1 PD6

PAGEL PD7

+12 V RESET

BS2 PA0

XTAL1

GND

Table 120. Pin Name Mapping

 

Signal Name in

 

 

 

 

Programming Mode

Pin Name

I/O

Function

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0: Device is busy programming, 1: Device is ready for new

 

RDY/BSY

 

PD1

O

 

 

 

 

 

 

command

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

PD2

I

Output Enable (Active low)

 

OE

 

 

 

 

 

 

 

 

 

 

PD3

I

Write Pulse (Active low)

 

WR

 

 

 

 

 

 

BS1

PD4

I

Byte Select 1 (“0” selects low byte, “1” selects high byte)

 

 

 

 

 

 

XA0

PD5

I

XTAL Action Bit 0

 

 

 

 

 

 

XA1

PD6

I

XTAL Action Bit 1

 

 

 

 

 

 

 

 

 

290

2467X–AVR–06/11

 

 

 

 

 

 

ATmega128

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 120. Pin Name Mapping (Continued)

 

 

 

 

 

 

 

 

 

 

 

 

 

Signal Name in

 

 

 

 

 

 

 

 

Programming Mode

Pin Name

I/O

Function

 

 

 

 

 

 

 

 

PAGEL

PD7

I

Program Memory and EEPROM data Page Load

 

 

 

 

 

 

 

 

BS2

PA0

I

Byte Select 2 (“0” selects low byte, “1” selects 2’nd high

 

 

 

byte)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

DATA

PB7-0

I/O

Bi-directional Data bus (Output when

 

is low)

 

OE

 

 

 

 

 

 

 

 

 

Table 121. Pin Values Used to Enter Programming Mode

Pin

Symbol

Value

 

 

 

PAGEL

Prog_enable[3]

0

 

 

 

XA1

Prog_enable[2]

0

 

 

 

XA0

Prog_enable[1]

0

 

 

 

BS1

Prog_enable[0]

0

 

 

 

Table 122. XA1 and XA0 Coding

XA1

XA0

Action when XTAL1 is Pulsed

 

 

 

0

0

Load Flash or EEPROM Address (High or low address byte determined by BS1)

 

 

 

0

1

Load Data (High or Low data byte for Flash determined by BS1)

 

 

 

1

0

Load Command

 

 

 

1

1

No Action, Idle

 

 

 

Table 123. Command Byte Bit Coding

Command Byte

Command Executed

 

 

1000 0000

Chip Erase

 

 

0100 0000

Write Fuse bits

 

 

0010 0000

Write Lock bits

 

 

0001 0000

Write Flash

 

 

0001 0001

Write EEPROM

 

 

0000 1000

Read Signature Bytes and Calibration byte

 

 

0000 0100

Read Fuse and Lock bits

 

 

0000 0010

Read Flash

 

 

0000 0011

Read EEPROM

 

 

Table 124. No. of Words in a Page and no. of Pages in the Flash

Flash Size

Page Size

PCWORD

No. of Pages

PCPAGE

PCMSB

 

 

 

 

 

 

64K words (128 Kbytes)

128 words

PC[6:0]

512

PC[15:7]

15

 

 

 

 

 

 

291

2467X–AVR–06/11

ATmega128

Table 125. No. of Words in a Page and no. of Pages in the EEPROM

EEPROM Size

Page Size

PCWORD

No. of Pages

PCPAGE

EEAMSB

 

 

 

 

 

 

4 Kbytes

8 bytes

EEA[2:0]

512

EEA[11:3]

8

 

 

 

 

 

 

Parallel

Programming

Enter Programming

The following algorithm puts the device in parallel programming mode:

Mode

1.

Apply 4.5V - 5.5V between VCC and GND, and wait at least 100µs.

 

 

2.

Set

 

to “0” and toggle XTAL1 at least SIX times.

 

RESET

 

3.

Set the Prog_enable pins listed in Table 121 on page 291 to “0000” and wait at least

 

 

100ns.

 

4.

Apply 11.5 - 12.5V to

 

 

Any activity on Prog_enable pins within 100ns after +12V

 

RESET.

 

 

has been applied to

RESET,

will cause the device to fail entering programming mode.

Note, if External Crystal or External RC configuration is selected, it may not be possible to apply qualified XTAL1 pulses. In such cases, the following algorithm should be followed:

1.Set Prog_enable pins listed in Table on page 291 to “0000”.

2.Apply 4.5 - 5.5V between VCC and GND simultaneously as 11.5 - 12.5V is applied to RESET.

3.Wait 100 µs.

4.Re-program the fuses to ensure that External Clock is selected as clock source (CKSEL3:0 = 0b0000) If Lock bits are programmed, a Chip Erase command must be executed before changing the fuses.

5.Exit Programming mode by power the device down or by bringing RESET pin to 0b0.

6.Entering Programming mode with the original algorithm, as described above.

Considerations for The loaded command and address are retained in the device during programming. For efficient Efficient Programming programming, the following should be considered.

The command needs only be loaded once when writing or reading multiple memory locations.

Skip writing the data value $FF, that is the contents of the entire EEPROM (unless the EESAVE fuse is programmed) and Flash after a Chip Erase.

Address high byte needs only be loaded before programming or reading a new 256 word window in Flash or 256-byte EEPROM. This consideration also applies to Signature bytes reading.

Chip Erase

The Chip Erase will erase the Flash and EEPROM(1) memories plus Lock bits. The Lock bits are

 

not reset until the program memory has been completely erased. The Fuse bits are not

 

changed. A Chip Erase must be performed before the Flash and/or the EEPROM are

 

reprogrammed.

 

Note: 1. The EEPRPOM memory is preserved during chip erase if the EESAVE fuse is programmed.

Load Command “Chip Erase”

1.Set XA1, XA0 to “10”. This enables command loading.

2.Set BS1 to “0”.

3.Set DATA to “1000 0000”. This is the command for Chip Erase.

4.Give XTAL1 a positive pulse. This loads the command.

292

2467X–AVR–06/11

ATmega128

5.Give WR a negative pulse. This starts the Chip Erase. RDY/BSY goes low.

6.Wait until RDY/BSY goes high before loading a new command.

Programming the The Flash is organized in pages, see Table 123 on page 291. When programming the Flash, the Flash program data is latched into a page buffer. This allows one page of program data to be programmed simultaneously. The following procedure describes how to program the entire Flash

memory:

A. Load Command “Write Flash”

1.Set XA1, XA0 to “10”. This enables command loading.

2.Set BS1 to “0”.

3.Set DATA to “0001 0000”. This is the command for Write Flash.

4.Give XTAL1 a positive pulse. This loads the command.

B. Load Address Low byte

1.Set XA1, XA0 to “00”. This enables address loading.

2.Set BS1 to “0”. This selects low address.

3.Set DATA = Address low byte ($00 - $FF).

4.Give XTAL1 a positive pulse. This loads the address low byte.

C. Load Data Low Byte

1.Set XA1, XA0 to “01”. This enables data loading.

2.Set DATA = Data low byte ($00 - $FF).

3.Give XTAL1 a positive pulse. This loads the data byte.

D. Load Data High Byte

1.Set BS1 to “1”. This selects high data byte.

2.Set XA1, XA0 to “01”. This enables data loading.

3.Set DATA = Data high byte ($00 - $FF).

4.Give XTAL1 a positive pulse. This loads the data byte.

E. Latch Data

1.Set BS1 to “1”. This selects high data byte.

2.Give PAGEL a positive pulse. This latches the data bytes. (See Figure 137 for signal waveforms)

F. Repeat B through E until the entire buffer is filled or until all data within the page is loaded.

While the lower bits in the address are mapped to words within the page, the higher bits address the pages within the FLASH. This is illustrated in Figure 136 on page 294. Note that if less than 8 bits are required to address words in the page (pagesize < 256), the most significant bit(s) in the address low byte are used to address the page when performing a page write.

G. Load Address High byte

1.Set XA1, XA0 to “00”. This enables address loading.

2.Set BS1 to “1”. This selects high address.

3.Set DATA = Address high byte ($00 - $FF).

4.Give XTAL1 a positive pulse. This loads the address high byte.

H. Program Page

293

2467X–AVR–06/11

ATmega128

1.Set BS1 = “0”

2.Give WR a negative pulse. This starts programming of the entire page of data. RDY/BSY goes low.

3.Wait until RDY/BSY goes high. (See Figure 137 for signal waveforms)

I.Repeat B through H until the entire Flash is programmed or until all data has been programmed.

J.End Page Programming

1.1. Set XA1, XA0 to “10”. This enables command loading.

2.Set DATA to “0000 0000”. This is the command for No Operation.

3.Give XTAL1 a positive pulse. This loads the command, and the internal write signals are reset.

Figure 136. Addressing the Flash which is Organized in Pages

 

PROGRAM

PCMSB

 

 

 

 

PAGEMSB

 

 

 

PCPAGE

PCWORD

 

 

 

 

 

COUNTER

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

PAGE ADDRESS

 

 

WORD ADDRESS

 

 

WITHIN THE FLASH

 

 

WITHIN A PAGE

 

PROGRAM MEMORY

 

 

 

 

 

 

 

 

 

PAGE

PCWORD[PAGEMSB:0]:

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

PAGE

 

 

 

 

 

 

 

 

INSTRUCTION WORD

00

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

01

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

02

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

PAGEEND

Note: 1. PCPAGE and PCWORD are listed in Table 124 on page 291.

294

2467X–AVR–06/11

ATmega128

Figure 137. Programming the Flash Waveforms

 

 

 

 

 

 

 

 

 

F

 

 

 

 

 

A

B

C

D

E

B

C

D

E

G

H

 

DATA

0x10

ADDR. LOW

DATA LOW

DATA HIGH

XX

ADDR. LOW

DATA LOW

DATA HIGH

XX

ADDR. HIGH

XX

 

 

 

 

 

 

 

 

 

 

 

 

 

XA1

 

 

 

 

 

 

 

 

 

 

 

 

XA0

 

 

 

 

 

 

 

 

 

 

 

 

BS1

 

 

 

 

 

 

 

 

 

 

 

 

XTAL1

 

 

 

 

 

 

 

 

 

 

 

 

WR

 

 

 

 

 

 

 

 

 

 

 

 

RDY/BSY

 

 

 

 

 

 

 

 

 

 

 

 

RESET +12V

 

 

 

 

 

 

 

 

 

 

 

 

OE

 

 

 

 

 

 

 

 

 

 

 

 

PAGEL

 

 

 

 

 

 

 

 

 

 

 

 

BS2

 

 

 

 

 

 

 

 

 

 

 

Note:

“XX” is don’t care. The letters refer to the programming description above.

Programming the The EEPROM is organized in pages, see Table 124 on page 291. When programming the EEPROM EEPROM, the program data is latched into a page buffer. This allows one page of data to be programmed simultaneously. The programming algorithm for the EEPROM data memory is as follows (refer to “Programming the Flash” on page 293 for details on Command, Address and

Data loading):

1.A: Load Command “0001 0001”.

2.G: Load Address High Byte ($00 - $FF).

3.B: Load Address Low Byte ($00 - $FF).

4.C: Load Data ($00 - $FF).

5.E: Latch data (give PAGEL a positive pulse).

K:Repeat 3 through 5 until the entire buffer is filled.

L:Program EEPROM page:

1.Set BS1 to “0”.

2.Give WR a negative pulse. This starts programming of the EEPROM page. RDY/BSY goes low.

3.Wait until to RDY/BSY goes high before programming the next page. (See Figure 138 for signal waveforms.)

295

2467X–AVR–06/11

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]