Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
физическая химия.doc
Скачиваний:
290
Добавлен:
15.02.2016
Размер:
2.16 Mб
Скачать

На электродах протекают реакции

Sn2+ + 2e-  Sn

Cl2 + 2e- 2Cl- .

Sn2++ 2Cl-Sn+Cl2

Потенциал правого электрода равен

. (11.25)

Потенциал левого электрода равен

. (11.26)

ЭДС цепи составляет

, (11.27)

Так как представляет собой среднюю ионную активность электролита, то

,

т.е. ЭДС простой химической цепи зависит от природы электродов и от средней ионной активности электролита. К сложным электрохимическим системам относятся системы, в которых одинаковые или различные металлические электроды погружены в различные по составу электролиты:

(-) Zn|ZnSO4||CuSO4|Cu(+).

На электродах протекают следующие реакции:

Zn  Zn2+ + 2e-;

Cu2+ + 2e-  Cu.

Eцепи равна

. (11.28)

ЭДС сложных химических цепей определяются разностью стандартных потенциалов электродов и активностью потенциал-определяющих ионов (т.е. ионов, обратимых по отношению к электродам).

11.5. Концентрационные цепи

Различают два типа концентрационных элементов – с переносом и без переноса ионов. Концентрационный элемент с переносом ионов состоит из двух одинаковых металлических пластинок, погруженных в раствор с различными концентрациями ионов данного металла. Растворы либо разделены пористой перегородкой, проницаемой для ионов, либо при нахождении в разных сосудах, соединенных электролитическим ключом. Например, левый медный электрод погружен в более концентрированный раствор С1 С2и приобретает более положительный потенциал, чем правый:

CuCu2++ 2e-

Cu2+ + 2e- Cu

Cu+Cu2+Cu2++Cu.

Движущей силой в этом элементе является разность концентраций. При его работе медный электрод растворяется в менее концентрированном растворе, а в более концентрированном ионы меди разряжаются и внедряются в металл. Это приводит к выравниванию концентраций, за счет чего и возникает электрическая энергия. Работа процесса, связанная с выравниванием концентраций, равна

. (11.29)

Эта работа полностью превращается в электрическую энергию . Отсюда

. (11.30)

Концентрационные элементы без переноса ионов состоят из двух электродов – твердых сплавов или амальгам, отличающихся по содержанию активного вещества. Оба электрода погружены в один и тот же раствор, содержащий ион активного вещества. В этих элементах существует граница между жидкими фазами и нет диффузионного потенциала, искажающего результаты измерения ЭДС.

Примером такого элемента может служить кадмиевый амальгамный элемент.

В этом случае происходит перенос кадмия от более концентрированной амальгамы к менее концентрированной. ЭДС такого элемента (при ) равна

. (11.31)

Эта формула справедлива, если металлы, входящие в состав сплава (или амальгамы), не образуют химических соединений.

Лекция 12. Поверхностные явления и адсорбция

12.1. Общая характеристика поверхностных явлений

К поверхностным явлениям относится совокупность явлений, связанных с особенностями свойств пограничных слоев между двумя соприкасающимися фазами, обусловленных наличием избыточной энергии у поверхности раздела. Эти явления могут быть разделены на две основные группы. К первой группе следует отнести явления, связанные с изменением формы поверхностей раздела (капиллярные явления, смачивание, прилипание и др.). Ко второй группе относятся адсорбированные явления, в основе которых лежит изменение состава поверхностного слоя.

Молекулы вещества, расположенного внутри фазы, отличаются по энергетическому состоянию от молекул, находящихся на границе раздела фаз.

Во внутренних слоях фазы силы взаимодействия для каждой молекулы в среднем по времени одинаковы по всем направлениям, полностью скомпенсированы и их равнодействующая равна нулю. Поэтому произвольное перемещение молекулы жидкости или газа внутри фазы в любом направлении не связано с выделением или поглощением энергии. Иначе обстоит дело с молекулами, находящимися на границе раздела фаз. Они испытывают неодинаковое влияние сил межмолекулярного взаимодействия со стороны каждой из соседних фаз, поскольку их физические свойства (плотность, поляризуемость и т.д.) различны.

Поверхностная молекула на границе жидкость/пар испытывает одностороннее притяжение со стороны жидкости, втягивающее ее внутрь жидкости.

В общем случае равнодействующая сил межмолекулярного взаимодействия поверхностных молекул перпендикулярна поверхности раздела и направлена в сторону фазы с более интенсивным межмолекулярным взаимодействием. Эта сила, отнесенная к единице площади поверхности раздела, носит название внутреннего давления. Как правило, внутреннее давление тем больше, чем выше полярность вещества. Втягивая поверхностные молекулы внутрь фазы, внутреннее давление стремится уменьшить поверхность до минимума, возможного в данных условиях.

Увеличение площади поверхности раздела фаз связано с выделением молекул из глубины фазы на поверхность, т.е. с совершением работы против сил внутреннего давления. Эта работа Wв обратимых изотермических условиях пропорциональна площади образующейся новой поверхностиS:

-dW=dS. (12.1)

Максимальная работа W, взятая со знаком минус, в зависимости от условий (р=соnst, илиV=const) равна увеличению энергии Гиббса или энергии Гельмгольца.

Подобным же образом к увеличению поверхностной энергии Гельмгольца приводит и работа разрыва связей при дроблении твердых тел (V=const), сопровождающаяся увеличением площади поверхности раздела фаз.

Коэффициент пропорциональности равен работе увеличения поверхности при постоянных температуре, объеме и составе, отнесенной к единице поверхности. Он численно равен удельной поверхностной энергии Гельмгольца иназывается поверхностным натяжением. В случае двух конденсированных фаз чаще используется понятие «межфазное натяжение». Сложилось так из-за того, что это понятие было введено раньше, чем была развита термодинамика поверхностных явлений. Величинурассматривали как силу, направленную тангенциально к поверхности и стягивающую ее, однако использование такого понятия может привести к неправильному выводу о том, что существует особая, отличная от межмолекулярных сила (поверхностная) и увеличение поверхности есть результат ее растяжения, т.е. увеличения расстояния между молекулами в поверхностном слое. Размерность величины– энергия на единицу поверхности (джоуль на квадратный метр), или, что то же, сила на единицу длины (ньютон на метр).