Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
физическая химия.doc
Скачиваний:
290
Добавлен:
15.02.2016
Размер:
2.16 Mб
Скачать

Лекция 3. Второе начало термодинамики и его применение

3.1. Основной смысл и значение второго закона термодинамики

Все многообразие процессов, происходящих в окружающем нас мире – в природе, в производственных и других условиях, – можно разделить на три группы:

1) процессы, для совершения которых требуется затрата работы извне в количестве, прямо пропорциональном производимому изменению;

2) процессы, для течения которых не требуется затраты работы извне и в результате которых не может быть получена работа против внешних сил;

3) процессы, которые могут протекать самопроизвольно, т.е. без затраты работы извне, причем в результате их может быть получена работа против внешних сил в количестве, пропорциональном произведенному изменению.

Примерами процессов первой группы может служить поднятие какого-либо тела на более высокий уровень, разложение воды действием электрического тока и т.д. Примерами процессов второй группы являются передвижение шара по строго горизонтальной плоскости или качание маятника без трения. К третьей группе принадлежат такие процессы, как опускание груза на более низкий уровень, взаимная нейтрализация сильной кислоты сильным основанием, любая реакция, используемая в работающем гальваническом элементе, сгорание горючего, взрыв, ржавление железа и т.д. Процессы этой группы называют положительными, в отличие от процессов первой группы, которые называют отрицательными.

Основными положениями первого закона, как мы видели, являются утверждения о постоянстве количества внутренней энергии, содержащейся в изолированной системе, и об эквивалентности различных форм энергии, а также соотношения, связывающие изменения внутренней энергии системы с количеством поступившей теплоты и произведенной работы. При этом первый закон не касается характера, возможности и направления тех процессов, при которых могут или будут происходить те или иные превращения энергии. Другими словами, с точки зрения первого начала термодинамики все процессы, происходящие без нарушения закона сохранения энергии, возможны. Однако опыт показывает, что самопроизвольные процессы в природе протекают только в определенных направлениях и до определенного предела. Поэтому первое начало термодинамики необходимо дополнить началом, которое позволяло бы судить о направлениях самопроизвольных процессов и пределах их протекания. Таким началом является эмпирический закон, установленный на основании большого человеческого опыта. Справедливость этого закона подтверждается тем, что ни одно из его следствий не находится в противоречии с опытом.

Второе начало термодинамики тесно связано с существованием необратимых процессов. Прежде всего познакомимся с понятиями необратимые и обратимые процессы в термодинамическом смысле.

3.2. Обратимые и необратимые процессы

Для выяснения понятий обратимыйинеобратимый процессв термодинамическом смысле рассмотрим изотермическое расширение 1 моля идеального газа. Допустим, что 1 моль идеального газа находится в цилиндре, снабженном невесомым поршнем, который может передвигаться вдоль стенок без трения. Стенки цилиндра обладают идеальной теплопроводностью, т.е. во время процесса температура не меняется.

В начальный момент (рис. 3.1) газ занимает объем V1и находится под давлениемР1. На графике такое состояние обозначено как начальное состояние 1.

Рис. 3.1. Соотношение между Рвнеш иV, позволяющее определять работу расширения для газа, расширяющегося против постоянного внешнего давления Р2и против переменного давления Р

Начнем изменять давление бесконечно малыми шагами. Если оно будет падать, то объем будет возрастать также бесконечно малыми шагами. Таким путем можно перейти из состояния 1в состояние2, в котором газ будет иметь давлениеР2и объемV2. Графически этот бесконечно медленный процесс изображается плавной кривой2. Работа, совершаемая системой, ограничена изотермой с ординатамиР1 иР2 и отрезком на оси абсциссV2V1 . Это работа расширения газа. Обозначим ееW1-2. Представим себе обратный процесс, в котором мы будем путем бесконечно малого увеличения давления сжимать газ. В конечном счете мы сможем вернуть его в первоначальное состояние 1. Графически этот процесс будет описываться той же плавной кривой 2-1, но протекать в обратном направлении.

В этом случае система при переходе из конечного состояния в начальное будет проходить через те же промежуточные состояния давления и объема как в прямом, так и в обратном процессах. Изменения происходили на бесконечно малые величины, и система в каждый момент времени находилась в равновесном состоянии.В этом случае работа, которую совершает система в обратном процессеW2-1,будет равной, но обратной по знаку работе прямого процесса:

W12 = -W2-1;W12+W2-1 = 0. (3.1)

Следовательно, обратимый процесс – это процесс, в результате которого система может возвратиться в исходное состояние без изменений в окружающей среде.

Значит, обратимые процессы протекают с бесконечно малыми ско­рос­тями. Только при этих условиях система в каждый момент времени будет на­хо­диться в состоянии, бесконечно мало отличающемся от равновесного. такие процессы называют равновесными, или квази­ста­ти­ческими.

Проведем процесс расширения 1 моль газа с конечной скоростью. при изменении давления на конечную величину (нижняя кривая) объем газа увеличивается также на конечную величину. Последовательно перейдем из состояния1в состояние2. Графически этот процесс изображен ломаной линией. Работа расширения, которую при этом совершает газ, численно равна площади под ломаной линией. Она меньше, чем в предыдущем случае. Проведем процесс в обратном направлении. Здесь также давление будет увеличиваться на конечную величину (верхняя ломаная линия). Объем газа уменьшается и через некоторое время достигает равновесного состояния. Работа, которую при этом производит внешняя среда (работа сжатия), численно равна площади, ограниченной верхней ломаной линией, двумя ординатамиР1 иР2и отрезком на оси абсциссV1V2.Сопоставим диаграммы сжатия и расширения и отметим, что при изменении состояния газа с конечной скоростью работа обратного процесса по абсолютной величине больше работы прямого процесса:

|W1-2||-W2-1|, (3.2)

W1-2+W2-10. (3.3)

Возвращение системы из конечного состояния в начальное происходит по другому пути, и в окружающей среде остаются какие-то изменения.

Необратимый процесс – это процесс, после которого система не может возвратиться в исходное состояние без изменений в окружающей среде. При протекании необратимого процесса в каждый момент времени система не находится в состоянии равновесия. Такие процессы называются неравновесными.

Вывод: Все самопроизвольные процессы протекают с конечными скоростями и поэтому являются необратимыми (неравновесными) процессами.

Вывод: Работа, совершаемая системой в обратимом процессе, всегда больше, чем в необратимом:

WобрWнеобр. (3.4)

Все реальные процессы в той или иной мере могут приближаться к обратимым. Работа, производимая системой, достигает максимального значения, если система совершает обратимый процесс:

Wобр=Wmax.(3.5)

Работу, производимую системой при переходе из одного состояния в другое, в общем случае можно представить как сумму работы расширения и других видов работы (работы против электрических, поверхностных, гравитационных и т.п. сил). Сумму всех видов работы, производимой системой за вычитом работы расширения, называют полезной работой. Если переход системы из состояния1в состояние2был осуществлен обратимо, то работа этого процесса будет максимальной (Wmax), а работа за вычетом работы расширения – максимальной полезной работой (W'max):

Wmax=W'max+pV; (3.6)

W'max=Wmax-pV. (3.7)