Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
физическая химия.doc
Скачиваний:
290
Добавлен:
15.02.2016
Размер:
2.16 Mб
Скачать

7.3. Закон разведения

В 1888 году немецкий химик В. Оствальд вывел взаимосвязь между ,КД и концентрацией электролита в растворе. Эта взаимосвязь получила название закона разведения. Так, для бинарного электролита (т.е. когда из каждой молекулы образуются два иона)

СВ+= СА-=С,

где С– общая концентрация электролита. Тогда

СМ = (1 -)С,

где СМ– концентрация недиссоциированных молекул.

Подставив эти значения СВ+А- и СМв выражение константы диссоциации, получим:

. (7.6)

Для очень разбавленных электролитов мало, и тогдаили

. (7.7)

V– разведение, т.е. величина, обратная концентрации.

V= 1/С

и тогда

. (7.8)

7.4. Сильные электролиты

Уже в работах Д.И. Менделеева, содержащих критику гипотезы электролитической диссоциации, было установлено, что во многих случаях выводы этой гипотезы неприменимы к экспериментальным данным. Опытный материал показывал, в частности, что закон действия масс неприменим к диссоциации сильных электролитов.

Дальнейшее изучение, особенно П. Дебаем и Э. Хюккелем (1923 г.), привело к следующим представлениям: 1) сильные электролиты в растворе полностью диссоциируют; 2) вокруг каждого иона образуется ионная оболочка (ионная атмосфера) за счет противоположно заряженных ионов; 3) молекулы растворителя не только находятся в пространстве между ионами, но и взаимодействуют с ними, образуя сольваты. Это отражается на свойствах как самих ионов, так и молекул растворителя. Конечно, тепловое движение частиц в той или иной мере нарушает указанную закономерность в расположении ионов. Наличие сольватационной оболочки приводит к увеличению радиуса иона и уменьшению скорости его движения, замедлению скорости химической реакции, уменьшению электропроводности раствора.

В растворе всегда экспериментально определяется меньшая концентрация вещества, чем взято для его приготовления. Поэтому различают аналитическую концентрацию(истинную) и активно проявляющуюся концентрацию, или активность:а = fc, гдеf– характеристика меры электростатического взаимодействия между ионами и молекулами растворителя, названная коэффициентом активности. Для бесконечно разбавленных растворовf= 1; по мере повышения концентрацииfсначала уменьшается, а затем растет, преимущественно оставаясь все же меньше единицы.

Неполная диссоциация молекул, взаимное притяжение ионов, их гидратация и другие эффекты влияют на различные свойства раствора. Суммарное влияние их на любое из термодинамических свойств может быть выражено через коэффициент активности электролита в данном растворе. Поэтому коэффициент активности и активность могут быть определены путем измерения различных свойств растворов: температуры замерзания, температуры кипения, давления насыщенного пара, осмотического давления, электродвижущей силы гальванической цепи и др.

7.5. Ионная сила

При рассмотрении термодинамических свойств растворов электролитов широко используется понятие ионной силы. Она определяется как полусумма произведений из концентраций всех ионов в растворе на квадрат их заряда:

. (7.9)

Для большинства биологических жидкостей ионная сила равна 0,15. Если в растворе содержатся только однозарядные ионы (т.е. электролит является одно-одновалентным), то ионная сила численно равна просто общему молярному содержанию их в растворе.

Для сильно разбавленных растворов верно следующее правило ионной силы: коэффициент активности f данного электролита в растворе зависит только от ионной силы раствора, и при одинаковом значении ее он сохраняет постоянное значение независимо от вида остальных электролитов, присутствующих в растворе:

. (7.10)

Уравнение (7.10) носит название предельной формы закона Дебая-Хюккеля и может применяться для описания свойств разбавленных водных растворов при ионной силе вплоть до J=0,02.