Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Новые методы торговли по Фибоначчи.doc
Скачиваний:
14
Добавлен:
31.10.2018
Размер:
7.38 Mб
Скачать

10 • Основные принципы фибоначчи

Рисунок 1.4 Золотое сечение прямоугольника. Источник: FAM Research, 2000.

Единственной математической кривой следующей модели есте­ственного роста является спираль, выраженная в таких природных феноменах, как Spira mirabilis или раковина наутилуса. ФИ-спираль называют самой красивой математической кривой. Этот тип спира­ли часто встречается в природе. Ряд суммирования Фибоначчи и зо­лотое сечение, представленное выше как его геометрический экви­валент, очень хорошо ассоциируются с этой замечательной кривой.

На рисунке 1.5 показана рентгенограмма раковины камерного наутилуса ("кораблика"). Последовательные камеры наутилуса построены, следуя форме ФИ-спирали. По мере роста раковины размер камер увеличивается, но их форма остается неизменной.

Для демонстрации геометрии ФИ-спирали лучше всего ис­пользовать золотой прямоугольник как основание для геометри­ческого анализа. Это показано схематично на рисунке 1.6.

Частное от деления длины на высоту прямоугольника ABCD на рисунке 1.6 можно вычислить. Как мы узнали ранее, оно соста­вляет АВ-г-ВС = ФИ-Н = 1,618. Через точку Е, также называемую золотым сечением АВ, проводится линия EF, перпендикулярная АВ, отрезающая от прямоугольника квадрат AEFD. Остающийся прямоугольник EBCF — золотой прямоугольник. Если отделить квадрат EBGH, то остающаяся фигура HGCF также будет золо­тым прямоугольником. Этот процесс можно повторять неопреде­ленно долго, пока конечный прямоугольник О не станет настоль­ко маленьким, что будет неотличим от точки.

Конечная точка О называется полюсом равноугольной спира­ли, которая проходит через золотые сечения D, Е, G, J и так далее.

ОТНОШЕНИЯ ФИБОНАЧЧИ • 11

Рисунок 1.5 ФИ-спираль, представленная в раковине наутилуса.

Источник: The Divine Proportion, H. E. Huntley (New York: Dover, 1970), p. iv. Перепечатано с разрешения.

D F J С

Рисунок 1.6 Геометрия ФИ-спирали. Источник: FAM Research, 2000.

12 • Основные принципы фибоначчи

Стороны прямоугольника почти, но не полностью касательные кривой.

Отношение ФИ-спирали кряду Фибоначчи очевидно из рисун­ка 1.6, потому что ФИ-спираль проходит по диагонали через про­тивоположные углы последовательных квадратов, например, DE, EG, GJ и так далее. Длины сторон этих квадратов формируют ряд Фибоначчи. Если самый маленький квадрат имеет сторону длиной d, смежный квадрат должен также иметь сторону длиной d. Следу­ющий квадрат имеет сторону длиной 2d (вдвое длиннее d), следу­ющий 3d (втрое длиннее d), формируя ряд Id, 2d, 3d, 5d, 8d, 13d... который является хорошо известной последовательностью Фибо­наччи: 1—1—2—3—5—8—3— и так далее до бесконечности.

Спираль не имеет конечной точки. При бесконечном росте на­ружу (или внутрь) ее форма остается неизменной. Два сегмента спирали идентичны по форме, но отличаются по размеру точно на коэффициент ФИ. Все спирали, чьи темпы роста являются элемен­тами ряда ФИ 0,618-1,000-1,618-2,618-4,236-6,854-11,090-и так далее, будут в контексте этой книги называться ФИ-спира-лями.

ФИ-спираль — связующее звено между рядом суммирования Фибоначчи, вытекающим из него отношением Фибоначчи ФИ, и волшебством природы, которое мы видим вокруг нас.

В дополнение к ФИ-спирали, в природе можно встретить и другие важные геометрические кривые. Из них наиболее сущест­венные для цивилизации — горизонт океана, след метеора, пара­бола водопада, дуга перемещения солнца, полумесяц и, наконец, полет птицы. Многие из этих естественных кривых могут быть геометрически смоделированы с использованием эллипсов.

Эллипс — математическое выражение овала. Каждый эллипс можно точно описать с помощью всего лишь нескольких характе­ристик (рисунок 1.7).

S,S2 на рисунке 1.7 — длина большой оси эллипса. S3S4 — дли­на малой оси эллипса. Эллипс теперь определяется уравнением

Для нас представляет интерес (в контексте анализа Фибонач­чи) отношение главной и малой оси эллипса, выраженное на ма­тематическом языке в следующей формуле

ОТНОШЕНИЯ ФИБОНАЧЧИ • 13

Рисунок 1.7 Геометрия ФИ-эллипса. Источник: FAM Research, 2000.

Эллипс превращается в ФИ-эллипс во всех тех случаях, где от­ношение большой оси к малой оси эллипса является элементным числом ряда ФИ 0,618-1,000-1,618-2,618-4,236-6,854- и так далее. Круг — специальный тип ФИ-эллипса, в котором а = Ь и от­ношение а-=-Ь= 1.

ФИ-эллипсы предпочтительнее всех других возможных эллип­сов (с отношениями главных осей, деленных на малые оси, ины­ми, чем числа ряда ФИ), поскольку эмпирические исследования показали, что люди находят приближения ФИ-эллипсов визуаль­но значительно более удовлетворительными.

Когда участники исследовательского проекта сталкивались с различными формами эллипсов и их спрашивали об уровне ком­форта, пробное эмпирическое исследование дало результаты, по­казанные в Таблице 1.1.

Три наблюдателя из четырех предпочли эллипсы, имеющие оси, чьи отношения равны отношению ФИ-эллипса (1,618) или так близко приближены к ФИ-эллипсу, чтобы были почти от не­го неотличимы.

После этого оптимистического обзора перейдем ко второй главной части нашего теоретического представления основных инструментов Фибоначчи.

К каким выводам можно прийти после того, что мы уже рас­сказали? И какие выводы сделал Эллиот, чтобы интегрировать ряд