Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Книга_верстка механика.doc
Скачиваний:
502
Добавлен:
31.05.2015
Размер:
24.07 Mб
Скачать

19.5. Расчеты на жесткость при изгибе

В ряде случаев работающие на изгиб элементы машиност­роительных и строительных конструкций должны быть рассчитаны не только на прочность, но и на жесткость. К деталям, рассчитываемым на жест­кость, относятся, в частности, валы зубчатых и червячных передач и многие части металлорежущих станков.

Расчет на жесткость элемента конструкции, имеющего форму бруса, заключается в определении наибольших перемещений его по­перечных сечений и сопоставлении их с допускаемыми, зависящими от назначения и условий эксплуатации данного элемента.

Рассмотрим простую консоль, нагруженную на свободном конце силой F, линия действия которой совпадает с одной из главных осей поперечного сечения балки (рис. 19.10).

Рис. 19.10. Линейное и угловое перемещения сечения при изгибе

При деформации балки центры тяжести ее поперечных сечений получают линейные перемещения, а сами сечения поворачиваются вокруг своих нейтральных осей. Допущение о малости перемещений позволяет считать, что направления линейных перемещений перпен­дикулярны продольной оси недеформированного бруса. Эти перемещения принято называть прогибами. Прогиб произвольного сечения обозначим ν, а наибольший прогиб – стрелу прогибаf. Геометрическое место центров тяжести поперечных сечений деформиро­ванного бруса, т. е. ось изогнутого бруса, условно называют изогнутой осью, или, чаще, упругой линией.

Угол поворота θ поперечного сечения равен углу между касательной к упругой линии в данной точке и осью недеформиро­ванного бруса.

Вывод: ордината упругой линии и угол наклона касательной, проведенной к ней в данной точке, полностью определяют линейное и угловое перемещения соответствующего поперечного сечения бал­ки.

В большинстве случаев условие жесткости выражается нера­венством

т. е. максимальный прогиб (стрела прогиба f) не должен превы­шать допускаемого . Значение допускаемого прогиба зависит от назначения и условий работы рассчитываемой конструкции и ко­леблется в широких пределах. Обычно допускаемую стрелу прогиба указывают в долях пролета (межопорного расстояния l) балки. Например, для ручных грузоподъемных кранов , для электрических , для валов и шпинделей металло­режущих станков = (0,0005–0,0010) l.

Для обеспечения нормальной работы подшипников скольжения и роликовых подшипников качения иногда ставится дополнительное условие жесткости – ограничение угла поворота опорных сечений:

При этом допускаемый угол поворота составляет в среднем 0,001 радиан.

19.6. Кручение вала (стержня) круглого поперечного сечения

Кручение – это такой вид деформации бруса, при котором в его поперечных сечениях возникает единственный внутренний сило­вой фактор – крутящий момент, обозначаемый Mz или Tk.

На рис. 19.11 изображен брус, работающий на кручение под действием приложенных к нему скручивающих моментов (M1, M2, M3, М4).

Во всех случаях будем считать, что алгебраическая сумма скручивающих моментов равна нулю, т. е. брус находится в равно­весии.

Применяя метод сечений и рассматривая равновесие оставленной части (рис. 19.12), приходим к выводу, что внутренние силы, возни­кающие в поперечном сечении бруса, должны дать момент (крутящий момент), уравновешивающий внешние моменты, приложенные к оставленной части.

Рис. 19.11. Крутящие моменты вала

Рис. 19.12. Кручение вала

Итак, крутящий момент, возни­кающий в произвольном поперечном се­чении бруса, численно равен алгебраической сумме скручивающих моментов, приложенных к оставленной части.

При кручении бруса в его попе­речных сечениях возникают только касательные напряжения.

Для расчета на прочность, так же как и при растяжении (сжатии) бруса, надо найти его опасное сечение. В случае, если размеры поперечного сечения по длине бруса постоянны, опасными будут сечения, в которых крутящий момент максимален. График, показывающий закон изменения крутящих мо­ментов по длине бруса, называется эпюрой крутящих моментов (см. рис. 19.12).

Правило знаков: будем считать крутя­щий момент положительным, если для наблюда­теля, смотрящего на проведенное сечение, он представляется направленным по часовой стрелке (рис. 19.13). Соответствующий внеш­ний момент направлен против часовой стрелки.

Рис. 19.13. Правило знаков для Mz