Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Статистика общая (лекции для ЗИЭФ контрольн. ра...doc
Скачиваний:
12
Добавлен:
16.11.2019
Размер:
3.36 Mб
Скачать

8.5. Базисные и цепные индексы

Часто в ходе экономического анализа изменение индекси­руемых величин изучают не за два, а за ряд последовательных периодов. Следовательно, возникает необходимость построения индексов за ряд этих последовательных периодов, которые обра­зуют индексные системы. Такие системы характеризуют изме­нения, происходящие в изучаемом явлении в течение исследуе­мого периода времени.

В зависимости от базы сравнения индексы бы­вают базисными и цепными.

В системе базисных индексов сравнения уровней индексируе­мого показателя в каждом индексе производится с уровнем базис­ного периода, а в системе цепных индексов уровни индексируемого показателя сопоставляются с уровнем предыдущего периода.

Цепные и базисные индексы могут быть как индивидуаль­ные, так и общие.

Ряды индивидуальных индексов просты по построению. Так, например, обозначив четыре последовательных периода под­строчными значениями 0, 1, 2, 3, исчисляем базисные и цепные индивидуальные индексы цен:

  • базисные индексы:

  • цепные индексы:

Между цепными и базисными индивидуальными индексами существует взаимосвязь, позволяющая переходить от одних ин­дексов к другим — произведение последовательных цепных индиви­дуальных индексов дает базисный индекс последнего периода:

Отношение базисного индекса отчетного периода к базисно­му индексу предшествующего периода дает цепной индекс от­четного периода:

Это правило позволяет применять так называемый цепной метод, т.е. находить неизвестный ряд базисных индексов по из­вестным цепным и наоборот.

Рассмотрим возможность применения цеп­ного метода исчисления для агрегатных индексов.

Как известно, в каждом отдельном индексе веса в его чис­лителе и знаменателе обязательно фиксируются на одном и том же уровне.

Если же строится ряд индексов, то веса в нем могут быть либо постоянными для всех индексов ряда, либо переменными.

Рассмотрим построение базисных и цепных индексов на при­мере агрегатных индексов цен и физического объема продукции.

Базисные индексы:

индексы цен Пааше ( с переменными весами):

…;

индексы цен Ласпейреса (с постоянными весами):

индексы физического объема продукции(с постоянными весами):

Цепне индексы:

индексы цен Паше(с переменными весами):

индексы цен Лайспереса(с постоянными весами):

индексы физического объема продукции (с постоянными весами):

Итак, в базисных агрегатных индексах все отчетные данные сопоставляются только с базисными (закрепленными) данными, а в цепных — с предыдущими (в данном случае - смежными) данными.

Период весов во всех индексах цен Пааше взят текущий (индексы с переменными весами), в индексах физического объема и индексах цен Ласпейреса — закрепленный (индексы с постоянными весами).

Постоянные веса (не меняющиеся при переходе от одного индекса к другому) позволяют исключить влияние изменения структуры на значение индекса.

Ряды агрегатных индексов с постоянными весами имеют преимущество — сохраняется взаимосвязь между цепными и базисными индексами, например, в ряду агрегатных индексов физического объема:

или в ряду агрегатных индексов цен Ласпейреса:

Таким образом, использование постоянных весов в течение ряда лет позволяет переходить от цепных общих индексов к базисным и наоборот.

В рядах агрегатных индексов качественных показателей, которые строятся с переменными весами (например, ряд цен Пааше), перемножение цепных индексов не дает базисный:

Для таких индексов переход от цепных индексов к базисным (и наоборот) невозможен. Вместе с тем, в статистической практике часто возникает необходимость определения динамики цен за дли­тельный период времени на основе цепных индексов цен с пере­менными весами. Тогда для получения приближенного базисного (итогового) индекса цепные индексы цен перемножают, заведомо зная, что в таком расчете допускается ошибка. Отдельные индексы этого ряда используются для пересчета стоимостных показателей отчетного периода в ценах предыдущего года. Основные формулы для расчета общих индексов приведены в табл. 8.6.

Таблица 8.6

Основные формулы исчисления общих индексов

Наименование индекса

Формула расчета индексов

Индивидуальный индекс

Агрегатный

индекс

Средний

индекс

Индекс физического объема продукции

В ценах базисного периода

В ценах отчетного периода

Индекс цен

С базисными весами(формула Лайспереса)

С отчетными весами(формула Паше)

Индекс стоимости продукции(товарооборота)

Индекс себестоимости продукции

Индекс издержек производства

Индексы производительности труда

8.6. Система взаимосвязанных индексов. Факторный анализ

Индексный метод не только характеризует динамику сложного явления, но и анализирует влияние на нее отдельных факторов.

Многие статистические показатели, характеризующие различ­ные стороны общественных явлений, находятся между собой в оп­ределенной связи (часто в виде произведения). Так, объем вырабо­танной продукции связан с уровнем производительности труда и с численностью занятых на предприятии работников; товарооборот является произведением количества проданной продукции на це­ну; валовой сбор той или иной культуры — произведением уро­жайности на посевную площадь и т.д. Форма взаимосвязи между такими показателями выявляется на основе теоретического анали­за. Статистика характеризует эти взаимосвязи количественно.

Все соотношения в таких произведениях могут рассматриваться как факторы, определяющие значение результативного показа­теля. Так, объем выработанной продукции на любом предпри­ятии может изменяться за счет совместного изменения двух фак­торов: производительности труда и численности работающих; то­варооборот может изменяться за счет изменения количества (объ­ема) проданных товаров и за счет изменения цен и т.д.

Связь между экономическими показателями находит отра­жение и во взаимосвязи характеризующих их индексов, т.е., ес­ли, z = у ∙ х, то и Iz = Iy ∙ Ix ; а если z =y/x , то и Iz = Iy / Ix .

Поэтому многие экономические показатели тесно связаны между собой и образуют индексные системы.

Система взаимосвязанных индексов дает возможность широ­ко применять индексный метод для изучения взаимосвязей об­щественных явлений, проведения факторного анализа с целью определения роли отдельных факторов (не зависимых друг от друга) на изменение сложного явления.

В отечественной статистике принята следующая прак­тика факторного анализа: если результативный показатель можно представить как произведение объемного и качественного факторов, то, определяя влияние объемного фактора на изменение результативного показателя, качественный фактор фиксируют на уровне базисного периода; если же определяется влияние качест­венного показателя, то объемный фактор фиксируется на уровне отчетного периода.

По существу, любой агрегатный индекс построен по такому принципу обособленного рассмотрения влияния отдельных факторов на изменение сложного показателя.

Рассмотрим построение взаимосвязанных индексов на при­мере индексов цен, физического объема продукции (если речь идет об отпускных ценах промышленности) или физического объема товарооборота (если речь идет о розничных ценах) и индекса стоимости продукции (товарооборота в фактических ценах).

Индексы физического объема и цен являются факторными по отношению к индексу стоимости продукции (товарообороту в фактических ценах):

или (8.18)

Таким образом, произведение индекса цен на индекс физи­ческого объема продукции дает индекс стоимости продукции (товарооборота в фактических ценах), т.е. образует индексную систему из этих трех индексов.

Если, например, по определенной группе товаров цена единицы товара в отчетном периоде по сравнению с базисным воз­росла в среднем на 20%, т.е. (Iр = 1,20), а физический объем то­варооборота (в фиксированных ценах) снизился на 5% (Iq = 0,95), то можно определить изменение объема товарообо­рота в фактических ценах:

=1,20*0,95= 1,14, или 114%.

Таким образом, при снижении физического объема товарооборота на 5%, товарооборот в фактических ценах в отчетном периоде по сравнению с базисным вырос на 14% при повыше­нии цен на единицу товара в среднем на 20%.

► Аналогичную взаимосвязь между индексом затрат на производство продукции, индексом себестоимости и ин­дексом физического объема продукции можно записать в виде следующей индексной системы:

(8.19)

Индекс изменения общего фонда оплаты труда F в связи с изменением обшей численности работающих Т и зара­ботной платы х:

(8.20)

Индекс изменения объема продукции Q в связи с измене­нием численности работающих T и уровня их выработки W:

(8.21)

Индекс изменения объема продукции Q в связи с измене­нием объема основных производственных фондов Ф и показателя эффективности их использования — фондоотдачи V:

(8.22)

Индекс изменения валового сбора УП в связи с изменени­ем урожайности У и посевной площади П:

(8.23)

К числу взаимосвязанных индексов относятся и индексы пе­ременного состава, постоянного состава и индексы структурных сдвигов. В этой системе динамика среднего показателя (индекса переменного состава) выступает как произведение двух индек­сов: индекса среднего показателя в неизменной структуре (ин­декс постоянного состава) и индекса влияния изменения структуры явлений на динамику среднего показателя (индекс структурных сдвигов):

(8.24)

Индексная система позволяет определить влияние отдельных факторов на формирование уровня результативного показателя, по двум известным значениям индексов найти значение третьего-неизвестное.

Например, если известно, что затраты на производство всей продукции в отчетном периоде по сравнению с базисным выросли на 15%(Izq=1,15) и одновременно уровень себестоимости единицы продукции снизился на 4%(Iz=0,96), то можно определить, что физический объем продукции вырос на 20%:

или 120%.

Рассмотренные системы представляют собой двухфакторные системы (связь результативного признака с двумя факторами). Но общий признак может зависеть от трех, четырех и более факторов, т.е. связь может быть трехфакторная, четырехфакторная и т.д.

Поэтому общие индексы могут быть разложены также на три и более факторных индекса, объясняющих изменение результативного признака за счет влияния каждого фактора в отдельности.

Применяются два метода разложения общего ин­декса на частные:

● метод обособленного (изолированного) изучения факторов;

● метод последовательно-цепной (взаимосвязанное изуче­ние факторов). Поскольку в действительности явления взаимосвязаны, то основной схемой следует считать последовательно-цепной анализ факторов, требующий правильного расположения фак­торов при построении модели результативного показателя (например, А = а ∙ b ∙ с).

На первом месте в модели следует ставить качественный фактор. Увеличение цепи факторов на один фактор (например, а ∙ b) каждый раз должно приводить к показателю, имеющему реаль­ный экономический смысл.

При определении влияния первого фактора все остальные факторы сохраняются в числителе и знаменателе на уровне от­четного периода.

При построении второго факторного индекса первый фактор сохраняется на уровне базисного периода, третий и все после­дующие — на уровне отчетного периода.

При построении третьего факторного индекса первый и второй сохраняются на уровне базисного периода, четвертый и все последующие — на уровне отчетного периода и т.д.

Предположим, что А = а ∙ b ∙ с. Тогда последовательно-цепное разложение факторов будет иметь вид:

или

(8.25)

Аналогично строится система взаимосвязанных индексов при четырехфакторной связи и т.д.

Покажем на условном примере проведение факторного ана­лиза сложного показателя с использованием системы взаимосвя­занных индексов.

Задача 6. Данные о пропаже товаров в розничной торговле рай­она представлены в табл.8.7.

Таблица 8.7.

Данные о продаже товаров

Товар

Продано в Ι квартале, млн руб

Снижение количества продажи во ΙΙ квартале по сравнению с Ι, %

Трикотаж

Обувь

3,2

5,5

-20

-10

Всего

8,7

-

Вычислить:

1) общий индекс физического объема товарооборота (количества продажи во II квартале к I кварталу);

2) среднее изменение цен на товары, если известно, что товарообо­рот в фактических ценах за это время вырос на 4%.

Решение.

1. Исходя из условия, запишем индивидуальные индексы количеств: i'q = 0,8; i"q = 0,9.

2. Исчислим общий индекс физического объема товарооборота в форме среднего взвешенного арифметического индекса:

или 86,3%

Физический объем товарооборота во II квартале по сравнению с I кварталом уменьшился на 13,7%, или на 1,19 млн руб. (7,51 —8,7). Изменение произошло за счет снижения количества продажи (без учета изменения цен).

3. Товарооборот в фактических ценах согласно условию вырос на 4% (следовательно, Ipq = 1,04).

4. Используя индексную систему, находим общий индекс цен:

или 120,5%

Следовательно, цены на данную группу товаров во II квартале по сравнению с I кварталом увеличились в среднем на 20,5%.

Таким образом, товарооборот в фактических ценах во II квар­тале по сравнению с I кварталом вырос на 4% за счет увеличения цен на 20,5% при одновременном снижении количества продажи на 13,7%.

Индексные системы могут применяться и для определения в абсолютном выражении изменения сложного явления за счет влияния отдельных факторов. Расчеты, связанные с определени­ем в абсолютном выражении изменения результативного пока­зателя за счет отдельных факторов, называют разложением абсо­лютного прироста (сокращения) по факторам.

Так рассмотренная выше индексная система трехфакторной связи (8.25) может быть представлена в абсолютных величинах следующим образом:

(8.26)

При построении индексов, оценивающих влияние отдельных факторов на изменение сложного явления, необходимо иметь в виду, что общий результат абсолютного изменения этого явления представляет собой сумму абсолютных изменений, обусловленных влиянием исследуемых факторов, формирующих это явление. Разложения абсолютного прироста по факторам могут быть записаны для самых различных результативных показателей, которые можно представить как произведение объемного фактора на качественный.

Согласно изложенному выше принципу разложение абсолютного прироста (сокращения) по факторам можно записать для рассмотренной выше индексной системы:

или (8.27)

или (8.28)

или

где Δpq — абсолютный прирост товарооборота в фактических це­нах, т.е. обусловленный изменениями двух факторов — количества проданных товаров и цен;

— абсолютный прирост товарооборота в результате изме­нения физического объема товарооборота (продажи то­вара);

— абсолютный прирост товарооборота в результате изме­нения цен.

Методику факторного анализа рассмотрим на примере.

Задача 7. Имеются следующие данные по двум фирмам (табл.8.8)

Таблица 8.8.

Количество себестоимость произведенной продукции

Фирма

Произведено мужской обуви, тыс. пар

Себестоимость единицы продукции, руб.

Базисный период

Базисный период

Базисный период

Отчетный период

q0

q1

z0

z1

«Олимп» «Омега»

12

8

15

10

250

300

220

300

Исчислить: изменение общих затрат на производство всей продукции под совместным влиянием двух факторов - изменения физического объема продукции и цен каждого из этих факторов в отдельности.

Решение.

  1. Для проведения факторного анализа воспользуемся индекс­ной системой:

откуда

  1. Совокупное действие двух факторов на изменение общих за­трат определим с помощью индекса затрат на производство продук­ции (результативного индекса):

или 116,7%

Индекс показывает, что затраты на производство всей продук­ции в отчетном периоде по сравнению с базисным увеличились на 16,7%, что в абсолютном выражении составило:

Δzq=∑ z1 q1 -∑ z0 q0 = 6300-5400 = 90

3. Влияние изменения себестоимости единицы продукции на величину общих затрат определим с помощью факторного индекса себестоимости продукции:

или 93,3%

Следовательно, за счет изменения себестоимости единицы про­дукции по каждой фирме произошло снижение общих затрат на производство продукции на 6,7%, что в абсолютном выражении со­ставило:

4. Влияние изменения объема продукции на величину общих затрат определим с помощью факторного индекса физического объема продукции:

или 125,0%

Следовательно, за счет роста общего объема произведенной про­дукции затраты на производство всей продукции выросли на 25%, что в абсолютном выражении составило:

Проверим взаимосвязь индексов и разложение абсолютного прироста по факторам.

Izq=Iz ∙ Iq; 1,167 = 1,25 ∙ 0,933; 1,167 = 1,167;

; 90 = -45 + 135; . 90 = 90.