Добавил:
kiopkiopkiop18@yandex.ru Вовсе не секретарь, но почту проверяю Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
6 курс / Анестезиология и реаниматология / SEMINAR_1_PO_ANESTEZIOLOGIYa_PEREDOPERATsIONNAYa_OTsENKA_KUBGMU.docx
Скачиваний:
8
Добавлен:
23.03.2024
Размер:
7.54 Mб
Скачать

Кардиомиогенная ауторегуляция

Ведущим механизмом регуляции насосной функции сердца является кардиомиогенная ауторегуляция. Существуют два способа реализации данного механизма:

1. гетерометрический — его основу составляет прямая зависимость силы сокращения сердечной мышцы от предварительного изменения длины кардиомиоцитов. Установлено, что сила каждого сердечного сокращения зависит от величины объема растяжения его камер поступающей кровью и определяется конечно-диастолической длиной кардиомиоцитов;

2. гомеометрический — его основу составляет изменение «механического напряжения» сердечной мышцы (отдельных кардиомиоцитов или миокардиальной стенки камер сердца) при ее сокращении в так называемом изометрическом режиме, т. е. без изменения длины миофибрилл. Вообще «механическое напряжение» — это научное понятие, которое трактуется как мера внутренних сил, возникающих в деформируемом теле под влиянием различных факторов. В кардиологии такое напряжение ассоциируют с понятием «инотропное состояние (или сократимость) сердечной мышцы».

Оба способа кардиомиогенной ауторегуляции реализуются во всех камерах сердца. Считается, что миогенный механизм наиболее важен для регуляции зависимости силы сокращения сердца от давления в аорте (эффект Анрепа). Данный эффект состоит в том, что при увеличении давления в аорте («на выходе» из сердца) сила и скорость сердечных сокращений возрастают, что позволяет сердцу преодолевать возросшее сопротивление «на выходе» и поддерживать оптимальным сердечный выброс.

Преднагрузка

Преднагрузка является мерой объема крови, поступающей в камеры сердца, который создает давление наполнения полостей сердца (прежде всего, желудочков), необходимое для растяжения кардиомиоцитов по отношению к их исходной длине. Увеличение преднагрузки наблюдают при гиперволе-мии и недостаточности сердечных клапанов. В этом случае независимо от инотропного состояния сердечной мышцы ее работу регулирует в основном длина мышечных волокон желудочка в конце диастолы, т. е. конечно-диастолический объем желудочка.

Закон Франка—Старлинга

 

Еще в XVIII в. было установлено, что повышение наполнения желудочка, т.е. увеличение конечного диастолического объема или преднагрузки, приводит к возрастанию силы сердечных сокращений и УО. Это свойство сердца является проявлением закона Франка—Старлинга. В экспериментах на изолированных мышечных клетках с их растягиванием (увеличением длины) подвешенными грузиками было доказано, что при последовательном увеличении преднагрузки [на рисунке — это сила тяги (вес) подвешенных гирь — А, В, С, D] в активированном миоците повышается его напряжение без реального сокращения.

Закон Франка—Старлинга: сила сокращения желудочков сердца, измеренная любым способом, является функцией длины мышечных волокон перед сокращением

В графической форме показана зависимость силы сердечного сокращения от величины конечного диастолического объема. При кровенаполнении интактного левого желудочка в умеренном количестве (объемы А, В, С) внутриполостное давление медленно повышается, что затем обеспечивает увеличение силы сердечных сокращений. Давление, создаваемое в период изоволюмической (начальной) фазы систолы, отражает увеличение сократимости желудочка. При увеличении инотропного состояния желудочка кривая изоволюмического систолического давления смещается вверх (пунктирная линия)].

Это так называемое изометрическое сокращение (фрагмент I). Создаваемое напряжение мышц в ответ на воздействие каждой из четырех преднагрузок показано на фрагменте И. Воздействие увеличивающихся преднагрузок А, В и С вызывает возрастание напряжения миоцита. Однако при дальнейшем увеличении преднагрузки (гиря D) перекрытие толстых и тонких филаментов начинает уменьшаться, что выражается в падении напряжения активированного миоцита во время его изометрического сокращения (фрагменты I и II, фрагмент III).

Если левый желудочек будет наполняться кровью в возрастающем количестве, но при этом сохранять свой объем неизменным, ход кривой изоволюмического систолического давления будет отражать напряжение, т.е. сократительную способность, син: инотропное состояние) желудочков. Эта кривая аналогична кривой напряжения (изометрического сокращения), установленной для изолированных мышечных клеток.

В физиологических условиях наполнение желудочка в возрастающем объеме приводит к повышению внутриполостного давления, которое детерминирует увеличение силы сокращения желудочков.

Если на сердце действуют симпатомиметики, которые, опосредуя свои эффекты через (1-адренорецепторы, повышают концентрацию внутриклеточного Са2+, то это приводит к увеличению сократимости миокарда. Чем больше повышается внутриполостное давление крови при данном неизменном объеме наполнения желудочков, тем больше смешается вверх кривая изоволюмического давления отражая повышение сократимости стенки желудочка.

Когда давление в полости левого желудочка поднимается выше давления крови в аорте, аортальный клапан открывается и кровь изгоняется из левого желудочка. При повышении аортального давления сила сокращения желудочка должна также увеличиваться — это ответ на увеличение постнагрузки. В определенном лимитированном диапазоне наполнение желудочка в возрастающих количествах приводит к увеличению силы его сокращения благодаря возрастанию внутриполосгного давления.