Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Otvetiki_dlya_PDF.docx
Скачиваний:
260
Добавлен:
16.03.2015
Размер:
3.74 Mб
Скачать

23.Условные законы распределения. Условная плотность вероятностей и ее свойства. Условные числовые характеристики.

Известно, что, если случайные события А и В зависимы, то условная вероятность события А отличается от его безусловной вероятности. В этом случае .

Аналогичное положение имеет место и для случайных величин.

Пусть и- зависимые случайные величины,- их совместная функция распределения. Если известно, что случайная величинауже приняла некоторое значениеy, то закон распределения случайной величины при этом условии не будет совпадать с ее безусловным законом распределения. Он называетсяусловным законом распределения случайной величины при условии, что, и, заданный для всех возможных значенийy случайной величины , полностью определяет зависимость между случайными величинамии.

Исчерпывающей характеристикой условного закона распределения случайной величины при условии, что, являетсяусловная функция распределения случайной величиныпри условии, что, которую естественно было бы определить следующим образом:. (3.12)

Следует отметить, что это определение не имеет смысла, если , что имеет место всегда, когдаявляется непрерывной случайной величиной. Тем не менее, в дискретном случае определением (3.12) можно вполне пользоваться.

Пусть - дискретный случайный вектор,- его возможные значения,- вероятности значений,,,(случай счетного числа значений дискретного случайного вектора рассмотреть самостоятельно). Тогда все условные законы распределения случайной величиныпри условии, что,, являются дискретными и согласно определению условной вероятности имеем:.

Дискретные условные законы распределения удобнее задавать не условной функцией распределения , а совокупностью условных вероятностей, заданных при каждом:

и записывать в виде таблицы:

Очевидно, что при этом выполняется условие нормировки:

.

Аналогичны выражения для условной функции распределения , условных вероятностейи дискретного условного закона распределения случайной величиныпри условии, что:

;

;

Для вероятностей в последней таблице также выполняется условие нормировки:.

Рассмотрим теперь непрерывный случайный вектор . Так как в этом случаепри любом, то определение (3.12) условной функции распределенияслучайной величиныпри условии, что, неприменимо. Для непрерывных случайных величиниусловную функцию распределенияопределяют следующим образом:.

Вероятность, стоящая под знаком

предела, представляет собой

вероятность попадания непрерывного

случайного вектора в полосу.

В соответствии с определением условной вероятности и свойствами двумерной функции распределения имеем:

.

Если последний предел существует, то он равен

.

Учитывая, что у непрерывного случайного вектора существует плотность вероятностейи, а также, что у случайной величинысуществует плотность вероятностейи, для условной функции распределенияполучаем выражение:

(3.13)

в точках непрерывности функций и.

Условная плотность вероятностей случайной величиныпри условии, что, по аналогии с одномерным случаем определяется как производная пох от условной функции распределения :

в точках, где условная плотность вероятностей непрерывна.

Из (3.13) следует, что

(3.14)

(при этом полагается, что , если).

Аналогичные выражения имеют место для условной функции распределения и условной плотности вероятностейслучайной величиныпри условии, что:

; (3.15)

в точках, где условная плотность вероятностей непрерывна;

(3.16)

(при этом полагается, что , если).

Как и любая плотность вероятностей, условные плотности вероятностей обладают свойствами:

при фиксированном y

; (условие нормировки);

при фиксированном х

; (условие нормировки).

Формулы (3.14) и (3.16) дают выражения для условных плотностей вероятностей через безусловные и их также можно записать в виде:

Полученная формула называется правилом умножения плотностей вероятностей, которая является обобщением известного правила умножения вероятностей.

Для непрерывных случайных величин в терминах плотностей вероятностей имеют место также аналоги формулы полной вероятности и формулы Байеса:

;

(в последней формуле - априорная плотность вероятностей, а- апостериорная плотность вероятностей).

Используя понятие условного закона распределения, получаем еще одно эквивалентное определение независимости случайных величин.

Для независимости случайных величин инеобходимо и достаточно, чтобы условные законы распределения одной из случайных величин относительно другой совпадали с безусловными (аналог равенств):

, ;

, ;

, .

Кратко о многомерном случае. Здесь возникает дополнительная возможность рассмотрения условных законов распределения одной группы координат случайного вектора относительно другой. Но при этом определения полностью аналогичны.

Так, например, условная плотность вероятностей «отрезка» векторапри условии, что случайные величиныприняли определенные значения, задается формулой:

.

Условные числовые характеристики (математическое ожидание и дисперсия) определяются и находятся также, как и безусловные, только в формулах для их вычисления следует безусловные законы распределения заменить на условные.

Если - дискретный случайный вектор, то условным математическим ожиданием случайной величиныпри условии, что, называется величина

а условным математическим ожиданием случайной величины при условии, что, - величина

Если - непрерывный случайный вектор, то условные математические ожидания случайной величиныпри условии, что, и случайной величиныпри условии, что, определяются формулами:;.

Аналогичные формулы имеют место и для условных дисперсий.

Если - дискретный случайный вектор, то

;

.

Если - непрерывный случайный вектор, то

;

.

Отметим, что, если безусловные математические ожидания и дисперсия являются числами, то условные математические ожидания и дисперсии являются функциями условия. Функцию называют также функцией регрессиина, а функцию- функцией регрессиина.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]