Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Общее 20.10.2011. I часть.doc
Скачиваний:
134
Добавлен:
14.08.2019
Размер:
17.95 Mб
Скачать

5.8. Цикл со ступенчатым подводом тепла

В еличина максимальной температуры Т3 (ТГ) в циклах ГТД и ГТУ обычно ограничивается условиями прочности турбины, что соответственно ограничивает работу цикла, а, следовательно, мощность (или тягу) двигателя. Повысить Lц можно, используя ступенчатый подвод тепла. На рис. 5.13 в “Т-s” координатах показан цикл с двухступенчатым подводом тепла. В этом цикле тепло подводится в изобарных процессах 2–3 и а–3'. Следует обратить внимание на то, что подвод тепла в процессе а–3' происходит при меньшем давлении, чем в процессе 2–3. Видно, что по сравнению с циклом Брайтона 1–2–3–4 (рис. 5.15.) ступенчатый подвод тепла увеличивает Lц (площадь цикла возрастает Lц ∑ = Lц I + Lц II). Однако КПД цикла при этом снижается. Для доказательства этого условно разделим цикл на два: I – цикл 1–2–3–4; II – цикл 4–а–3'–4'.

Рис. 5.13. Изображение цикла с двухступенчатым подводом тепла

в тепловой “Т-s” диаграмме

Запишем выражения для термодинамических КПД цикла I, цикла II и цикла со ступенчатым подводом тепла:

(5.48)

Так как степень повышения давления в цикле II меньше, чем в цикле I,

ηt II < ηt I.

Решая совместно уравнения (5.48), нетрудно получить следующее соотношение:

. (5.49)

Из (5.49) видно, что поскольку ηtII < ηtI, то ηt < ηtI. Следовательно, термический КПД цикла со ступенчатым подводом тепла меньше КПД исходного цикла Брайтона.

Рис. 5.14. Схема турбореактивного двигателя с

форсажной камерой сгорания (ТРДФ)

Цикл со ступенчатым подводом тепла применятся в авиации в турбореактивных двигателях с форсажной камерой сгорания (ТРДФ). Схема такого двигателя приведена на рис. 5.14. Термодинамические процессы протекают в этом двигателе следующим образом. Процесс 1–2 (рис. 5.15.) соответствует адиабатному сжатию во входном устройстве I и компрессоре II; процесс 2–3 – изобарному подводу тепла в основной камере сгорания III; процесс 3–а – адиабатному расширению в турбине IV; процесс а–3' – изобарному подводу тепла в форсажной камере сгорания V; процесс 3'–4' – адиабатному расширению в сопле VI; процесс 4'–1 – замыкающий изобарный процесс отвода тепла в окружающую среду. Отметим, что в ТРДФ температура газа в форсажной камере (Т3') обычно выше температуры перед турбиной (Т3) в виду отсутствия ограничений, связанных с работой турбины. Когда форсажная камера сгорания выключена, двигатель работает как ТРД по циклу Брайтона 1–2–3–4. Из выше сказанного следует, что ηt ТРД > ηt ТРДФ. ТРДФ обеспечивает по сравнению с ТРД увеличение тяги вследствие большей работы цикла, но имеет худшую экономичность из-за меньшего значения ηt .

Рис. 5.15. Изображение цикла ТРДФ в диаграммах состояния

Таким образом, если к исходному циклу добавляются дополнительные ступени подвода тепла (при меньшем давлении), то это приводит к увеличению работы цикла, но ухудшению его экономичности. К такому же результату приводит и ступенчатый отвод тепла.

Если же в цикле со ступенчатым подводом и отводом тепла осуществляется и регенерация тепла, то это приводит как к росту Lц, так и к увеличению ηt по сравнению с исходным циклом. В этом случае увеличением числа ступеней подвода и отвода тепла термический КПД идеального цикла может быть приближен к ηt обратимого цикла Карно.