Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Основы методологии научного познания.docx
Скачиваний:
42
Добавлен:
12.08.2019
Размер:
919.68 Кб
Скачать

Функции моделей в научном познании

Что же приносит исследователю применение метода моделирования?

Модели выполняют множество функций в научном познании, причем использование модели в научной практике приводит, как правило, сразу к нескольким существенным ре­зультатам.

Теоретическая, обобщающая модель. Удачная модель может оказаться до­статочно адекватной формой для представлений знаний. В науке нередки ситуации, когда введение подобной модели в систему научного знания служило целям теоретизирования в данной предметной области. Модель в этом случае приобретает самостоятельную теоретическую ценность. Например, в биологических науках многие результаты «хранятся» имен­но в виде концептуальных моделей: модель Ходжкина—Хаксли в теории мембранного возбуждения, модель Лотка в теории открытых биохими­ческих систем. Кроме того, с построения основополагающих моде­лей могут брать начало целые новые области научного знания, так, возник­новение популяционной генетики как науки непосредственно связано с исходными моделями Харди и Вайнберга (1908).

Эвристическая модель. Здесь термин «эвристический» используется в узком смысле — как то, что способствует порождению новых идей. Эвристичность модели в этом понимании означает ее способность вести за собой творческую интуицию, активизировать процесс «озарений», появления неожиданных догадок. Для выполнения этой функции модели вовсе не обязательно быть точной, она может быть и весьма приближенной (даже в чем-то ошибочной), но, тем не менее, служить приросту научных идей, «прорыву» в исследованиях. Если при реализации обобщающей функции модели ее результатом является создание научной теории, то эвристическая функция, как правило, реализуется в выдвижении новых гипотез.

Примером может служить модель Друде, предложенная в XIX в. физиком Паулем Друде для изучения явления проводимости металлов и стре­мившаяся согласовать электродинамику с классической термодинамикой (она изображала совокупность электронов в проводнике как идеальный газ, подчиняющийся законам термодинамики). Некоторые явления были успешно объяснены с ее помощью; однако эта модель стимулировала новые поиски скорее не своими успехами, а как раз расхождениями с экспериментальными данными, что в результате упорной работы ученых привело к пересмотру ее исходных положений и соединению электронной теория металлов с квантовой механикой.

Трансляционная модель может способствовать переносу концептуальных схем, методологических форм из одной области знания в другую. В этом случае обычно модель берется из другой предметной области относительно исходного объекта, и на этапе экстраполяции происходите перенос знаний из одной предметной области в другую.

Примером подобной трансляции может служить применение теории игр, основы которой были заложены Дж. фон Нейманом; подходы, разработанные в этой области, демонстрируют, что большой класс конфликтных ситуаций (в экономике, психологии, социологии, статистике и др.) можно описывать и изучать с единых позиций как поиск рациональной стратегии игрока в некоторой игре. Теоретико-игровые модели способствовали, прежде всего, переносу математических методов в те области, которые раньше казались не поддающимися никакому рациональному подходу.

Примером использования трансляционной модели для решения конкретных задач является также интересная модель гемодинамики, разработанная в нашей стране совместными усилиями математиков, физиологов и врачей. Здесь исходные положения и термины были взяты из экономической науки: клетки и ткани определяли «спрос» на кислород­ное обеспечение, скорость кровотока — «предложение», кислородный долг являлся «ценой»; результатом исследования явился ряд практических рекомендаций.

Конструктивная, проектирующая модель. Разработка модели может служить целям создания нового объекта на основании данной модели как исходной матрицы. Это характерно, прежде всего, для задач прикладной науки, где по итогам испытания модели (скажем, двигателя с требуемыми характеристиками) осуществляют разработку и производство собственно нового технического устройства. Но эта же функция моделирования мо­жет реализовываться и в сугубо теоретических науках.

Например, в математике построение модели как создание нового мате­матического объекта может иметь самостоятельное значение, вносящее существенный вклад в развитие науки и само по себе служащее решением сложной проблемы. Так, фундаментальные результаты относительно ак­сиомы выбора и континуум-гипотезы были получены К. Геделем (1939) и П. Дж. Коэном (1963) методом построения соответствующих моделей.

Прагматическая модель. Использование удачной модели может способ­ствовать достижению ряда прагматических эффектов, связанных с улуч­шением формы репрезентации исходного знания. К полезным практиче­ским следствиям, повышающим эффективность использования знания, относятся такие достоинства модели, как осуществляемое с ее помощью упрощение формы представления знания, придание информации большей наглядности и логической прозрачности, благодаря чему это знание лег­че использовать в процессах аргументации, в преподавании и обучении. Большое значение может представлять собой на ранних этапах формиро­вания теории проблема наглядности. В этом случае используют различно­го рода модели, служащие средством рассуждения по аналогии (скажем, искривленная плоскость как способ придать наглядность представлениям об искривленном пространстве). В дальнейшем при оформлении теорети­ческого «здания» подобного рода «подпорки» теряют свое значение. На­пример, в электродинамике на первых порах использовались метафоры из механики — «упругие трубки». Это было подвергнуто критике уже П.Дюгемом и вскоре отброшено.

Интерпретационная модель выполняет функцию частич­ного толкования. Ведь рассуждение и объяснение с помощью модели из­начально односторонне, неполно. Поэтому, как правило, та или иная мо­дель часто соседствует с другими, альтернативными моделями или же заменяется ими в дальнейших исследованиях. Выступая как средство ин­терпретации, модели оказываются формой связи теоретического и эмпи­рического уровней. Так, модель может быть как средством истолкования теории, когда мы ищем подходящий объект, в котором воплощается тео­рия (как в математической логике), тогда это реализующая модель, так и средством интерпретации фактов, когда ищется определенная кон­цептуальная схема, в которой эмпирические данные могут обрести свой смысл, тогда это объяснительная модель.

Для иллюстрации интерпретативной функции моделей возьмем при­мер из экономики. Известно, что экономическая система представляет собой сложнейший объект, реагирующий на самые разнообразные факторы (социальные, психологические, природные). Один из удачных способов осмыслить многообразие экономических взаимосвязей — этот модель народного хозяйства как гигантского компьютера, который, как; пишет В.В. Леонтьев, трудится над бесконечным потоком количественных проблем, решая из года в год сложные системы уравнений задолго до того, как их начали решать экономисты.

При удачном использовании модели обычно реализуются сразу не­сколько функций моделирования: например, достаточно адекватная мо­дель одновременно и предлагает возможное объяснение феноменам, и сти­мулирует рождение новых идей, и способствует достижению большей наглядности имеющихся знаний.