Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
nestudent.ru_46905.doc
Скачиваний:
22
Добавлен:
12.09.2019
Размер:
2.07 Mб
Скачать

Нерекурсивное построение кривых Серпинского

Приведенный ранее алгоритм построения кривых Серпинского включает в себя косвенную и множественную рекурсию. Так как алгоритм состоит из четырех подпрограмм, которые вызывают друг друга, то нельзя просто пронумеровать важные строки, как это можно было сделать в случае алгоритма построения кривых Гильберта. С этой проблемой можно справиться, слегка изменив алгоритм.

Рекурсивная версия этого алгоритма состоит из четырех подпрограмм SierpA, SierpB, SierpC и SierpD. Подпрограмма SierpA выглядит так:

Private Sub SierpA(Depth As Integer, Dist As Single)

If Depth = 1 Then

Line -Step(-Dist, Dist)

Line -Step(-Dist, 0)

Line -Step(-Dist, -Dist)

Else

SierpA Depth - 1, Dist

Line -Step(-Dist, Dist)

SierpB Depth - 1, Dist

Line -Step(-Dist, 0)

SierpD Depth - 1, Dist

Line -Step(-Dist, -Dist)

SierpA Depth - 1, Dist

End If

End Sub

Три другие процедуры аналогичны. Несложно объединить эти четыре процедуры в одну подпрограмму.

Private Sub SierpAll(Depth As Integer, Dist As Single, Func As Integer)

Select Case Punc

Case 1 ' SierpA

<код SierpA code>

Case 2 ' SierpB

<код SierpB>

Case 3 ' SierpC

<код SierpC>

Case 4 ' SierpD

<код SierpD>

End Select

End Sub

======112

Параметр Func сообщает подпрограмме, какой блок кода выполнять. Вызовы подпрограмм заменяются на вызовы процедуры SierpAll с соответствующим значением Func. Например, вызов подпрограммы SierpA заменяется на вызов процедуры SierpAll с параметром Func, равным 1. Таким же образом заменяются вызовы подпрограмм SierpB, SierpC и SierpD.

Полученная процедура рекурсивно вызывает себя в 16 различных точках. Эта процедура намного сложнее, чем процедура Hilbert, но в других отношениях она имеет такую же структуру и поэтому к ней можно применить те же методы устранения рекурсии.

Можно использовать первую цифру меток pc, для определения номера блока кода, который должен выполняться. Перенумеруем строки в коде SierpA числами 11, 12, 13 и т.д. Перенумеруем строки в коде SierpB числами 21, 22, 23 и т.д.

Теперь можно пронумеровать ключевые строки кода внутри каждого из блоков. Для кода подпрограммы SierpA ключевыми строками будут:

' Код SierpA.

11 If Depth = 1 Then

Line -Step(-Dist, Dist)

Line -Step(-Dist, 0)

Line -Step(-Dist, -Dist)

Else

SierpA Depth - 1, Dist

12 Line -Step(-Dist, Dist)

SierpB Depth - 1, Dist

13 Line -Step(-Dist, 0)

SierpD Depth - 1, Dist

14 Line -Step(-Dist, -Dist)

SierpA Depth - 1, Dist

End If

Типичная «рекурсия» из кода подпрограммы SierpA в код подпрограммы SierpB выглядит так:

SaveValues Depth, 13 ' Продолжить с шага 13 после завершения.

Depth = Depth - 1

pc = 21 ' Передать управление на начало кода SierpB.

======113

Метка 0 зарезервирована для обозначения выхода из «рекурсии». Следующий код демонстрирует нерекурсивную версию процедуры SierpAll. Код для подпрограмм SierpB, SierpC, и SierpD аналогичен коду для SierpA, поэтому он опущен.

Private Sub SierpAll(Depth As Integer, pc As Integer)

Do

Select Case pc

' **********

' * SierpA *

' **********

Case 11

If Depth <= 1 Then

SierpPicture.Line -Step(-Dist, Dist)

SierpPicture.Line -Step(-Dist, 0)

SierpPicture.Line -Step(-Dist, -Dist)

pc = 0

Else

SaveValues Depth, 12 ' Выполнить SierpA

Depth = Depth - 1

pc = 11

End If

Case 12

SierpPicture.Line -Step(-Dist, Dist)

SaveValues Depth, 13 ' Выполнить SierpB

Depth = Depth - 1

pc = 21

Case 13

SierpPicture.Line -Step(-Dist, 0)

SaveValues Depth, 14 ' Выполнить SierpD

Depth = Depth - 1

pc = 41

Case 14

SierpPicture.Line -Step(-Dist, -Dist)

SaveValues Depth, 0 ' Выполнить SierpA

Depth = Depth - 1

pc = 11

' Код для SierpB, SierpC и SierpD опущен.

:

' *******************

' * Конец рекурсии. *

' *******************

Case 0

If TopOfStack <= 0 Then Exit Do

RestoreValues Depth, pc

End Select

Loop

End Sub

=====114

Так же, как и в случае с алгоритмом построения кривых Гильберта, преобразование алгоритма построения кривых Серпинского в нерекурсивную форму не изменяет время выполнения алгоритма. Новая версия алгоритма имитирует рекурсивный алгоритм, который выполняется за время порядка O(N4), поэтому порядок времени выполнения новой версии также составляет O(N4). Она выполняется немного медленнее, чем рекурсивная версия, и является намного более сложной.

Нерекурсивная версия также могла бы рисовать кривые более высоких порядков, но построение кривых Серпинского с порядком выше 8 или 9 непрактично. Все эти факты определяют преимущество рекурсивного алгоритма.

Программа Sierp2 использует этот нерекурсивный алгоритм для построения кривых Серпинского. Задавайте вначале построение несложных кривых (меньше 6 порядка), пока не определите, насколько быстро будет выполняться эта программа на вашем компьютере.

Резюме

При применении рекурсивных алгоритмов следует избегать трех основных опасностей:

  • Бесконечной рекурсии. Убедитесь, что условия остановки вашего алгоритма прекращают все рекурсивные пути.

  • Глубокой рекурсии. Если алгоритм достигает слишком большой глубины рекурсии, он может привести к переполнению стека. Минимизируйте использование стека за счет уменьшения числа определяемых в процедуре переменных, использования глобальных переменных, или определения переменных как статических. Если процедура все равно приводит к переполнению стека, перепишите алгоритм в нерекурсивном виде, используя устранение хвостовой рекурсии.

  • Ненужной рекурсии. Обычно это происходит, если алгоритм типа рекурсивного вычисления чисел Фибоначчи, многократно вычисляет одни и те же промежуточные значения. Если вы столкнетесь с этой проблемой в своей программе, попробуйте переписать алгоритм, используя подход снизу вверх. Если алгоритм не позволяет прибегнуть к подходу снизу вверх, создайте таблицу промежуточных значений.

Применение рекурсии не всегда неправильно. Многие задачи являются рекурсивными по своей природе. В этих случаях рекурсивный алгоритм будет проще понять, отлаживать и поддерживать, чем его нерекурсивную версию. В качестве примера можно привести алгоритмы построения кривых Гильберта и Серпинского. Оба по своей природе рекурсивны и намного понятнее, чем их нерекурсивные модификации. При этом рекурсивные версии даже выполняются немного быстрее.

Если у вас есть алгоритм, который рекурсивен по своей природе, но вы не уверены, будет ли рекурсивная версия лишена проблем, запишите алгоритм в рекурсивном виде и выясните это. Может быть, проблемы не возникнут. Если же они возникнут, то, возможно, окажется проще преобразовать эту рекурсивную версию в нерекурсивную, чем написать нерекурсивную версию с нуля.

======115

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]