Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Уч-Псб-Тр 2-5-Тр-пр.doc
Скачиваний:
602
Добавлен:
01.09.2019
Размер:
13.48 Mб
Скачать

12.3.3 Запорная арматура

Запорная арматура предназначена только для полного перекрытия или открытия потока среды и может находиться только в полностью закрытом или открытом положении. К запорной арматуре относятся задвижки, запорный клапаны, краны, поворотные затворы.

Тип и назначение трубопровода, вид запорной арматуры и место ее установки в гидравлической системе определяют конкретные особенности эксплуатации арматуры, а также характер требований, предъявляемых к ней. Так, запорная арматура на линейной части магистральных нефтепроводов подавляющую часть времени своего функционирования находится в открытом положении, при этом через нее идет поток транспортируемой нефти. Такая арматура закрывается только тогда. когда надо отсечь тот или иной участок магистрали, например, для проведения ремонтных работ. При этом арматура должна обеспечивать полную герметичность. Основные требования к запорной арматуре линейной части нефтепроводов следующие: минимальное гидравлическое сопротивление; легкость закрытия после длительной эксплуатации в открытом положении; высокая герметичность в закрытом положении; долговечность, так как операция по замене такой арматуры может быть дороже самой арматуры; высокая надежность.

На технологических и вспомогательных трубопроводах НПС запорная арматура предназначена для оперативных переключений, а также для отключения отдельных участков и эксплуатируется очень интенсивно. Эта арматура за свой срок службы, который практически ниже срока службы арматуры линейной части, срабатывает большое число раз.

Задвижки

К задвижкам относятся запорные устройства, в которых запорный элемент при открытии и закрытии проходного сечения перемещается в направлении, перпендикулярном направлению движения потока транспортируемой среды. Запорный элемент в задвижке перемещается при помощи системы винт – гайка. Задвижки широко применяют для перекрытия потоков газообразных и жидких сред в трубопроводах диаметром Ду от 50 до 2000 мм при рабочих давлениях 4 – 200 кГс/см2 и температурных средах до 450 0С.

В сравнении с другими видами запорной арматуры задвижки имеют следующие преимущества: незначительное гидравлическое сопротивление при полностью открытом проходе (в 30 – 40 раз меньше, чем у запорных клапанов); отсутствие поворотов потока рабочей среды; возможность применения для перекрытия потоков среды большой вязкости; простота обслуживания; относительно небольшая строительная длина; возможность подачи среды в любом направлении. Малое гидравлическое сопротивление достигается тем, что при вращении шпинделя запорный элемент полностью выдвигается в верхнюю часть корпуса.

К недостаткам задвижек относится относительно большая высота, поэтому в тех случаях, когда затвор в соответствии с технологическим процессом большую часть времени должен быть закрыт, а открывается он редко, в целях экономии места при Ду ≤ 200 мм, как правило, применяют запорный клапани.

Задвижки могут быть полнопроходными и суженными, в последних диаметр отверстия уплотнительных колец меньше диаметра трубопровода. По форме запорного элемента задвижки подразделяются на клиновые и параллельные. В зависимости от конструкции системы винт – гайка и ее расположения (в среде или вне среды) задвижки могут быть с выдвижным и невыдвижным шпинделем.

Клиновые задвижки.

Клиновые задвижки имеют затвор в виде плоского клина. В клиновых задвижках седла и их уплотнительные поверхности параллельны уплотнительным поверхностям затвора и расположены под некоторым углом к направлению перемещения затвора. Преимущества таких задвижек – повышенная герметичность прохода в закрытом положении, а также относительно небольшая величина усилия, необходимого для обеспечения уплотнения.

К недостаткам задвижек этого типа можно отнести необходимость применения направляющих для перемещения затвора, а также технологические трудности получения герметичности в затворе.

Все клиновые задвижки по конструкции затвора могут быть с цельным, упругим или составным клином.

Задвижки с цельным клином нашли широкое применение, так как их конструкция проста и, следовательно, имеет небольшую стоимость в изготовлении. Цельный клин представляет собой весьма жесткую конструкцию, достаточно надежен в рабочих условиях и может быть применен для перекрытия потоков при довольно больших перепадах давления на затворе.

Примером конструкции задвижки этого типа может служить задвижка с выдвижным (см. рисунок. 12.5.а) или невыдвижным шпинделем.

Задвижка на рисунке 12.5.а состоит из литого корпуса, в который ввинчены уплотнительные седла. Как правило, их изготавливают из легированных, износостойких сталей. Вместе с корпусом отлиты, а затем механически обработаны направляющие для фиксации направления перемещения клина. Клин имеет две кольцевые уплотнительные поверхности и шарнирно через сферическую опору подвешен к шпинделю. Верхняя крышка соединяется с корпусом посредством болтов или шпилек. Для центровки крышки по отношению к корпусу в ней имеется кольцевой выступ, который входит в проточку корпуса. Уплотнение между крышкой и корпусом обеспечивается прокладкой, которая закладывается в проточку корпуса. Для предотвращения перекосов шпинделя в верхнюю часть крышки запрессовывается направляющая втулка.

1 – корпус; 2 – седло; 3 – направляющая движения клина; 4 – клин; 5 – шпиндель; 6 – верхняя крышка; 7 – шпилька; 8 – уплотнительная прокладка; 9 – направляющая втулка, 10 – сальник; 11 – нажимной фланец; 12 – бугель; 13 – ходовая гайка;

14 – маховик.

Рисунок 12.5.а - Полнопроходная задвижка с цельным клином

Существует также конструкция задвижки с цельным клином, но с невыдвижным шпинделем, там ходовая гайка закреплена в верхней части затвора. В гайку ввинчен шпиндель, жестко соединенный с маховиком. Система винт – гайка служит для преобразования вращательного движения маховика (при открытии или закрытии задвижки) в поступательное движение затвора

Задвижки с упругим клином. В них затвор представляет собой разрезанный клин, обе части которого связаны между собой упругим (пружинящим) элементом (упругим ребром), который позволяет уплотнительным поверхностям клина поворачиваться относительно друг друга на некоторый угол, что обеспечивает лучшее их прилегание к уплотнительным поверхностям седел. Эта особенность упругого клина исключает необходимость индивидуальной технологической подгонки уплотнения и уменьшает опасность заклинивания. Задвижки этого типа изготавливают как с выдвижным (см. рисунок 12.5.б), так и с невыдвижным шпинделем.

Конструкция затвора задвижек этого типа обеспечивает лучшее уплотнение прохода в закрытом положении без индивидуальной технологической подгонки. Под действием усилия прижатия, которое передается через шпиндель, в закрытом положении упругий элемент может изгибаться в пределах

1 – седло; 2 – затвор; 3 – корпус; 4 – ходовая гайка; 5 – уплотнительная прокладка;

6 – шпиндель; 7 – верхняя крышка; 8 – кольцевая прокладка; 9 – сальник; 10 – нажимная втулка; 11 – маховик.

Рисунок 12.5.б - Задвижка с упругим клином и выдвижным шпинделем

упругих деформаций, обеспечивая плотное прилегание обоих уплотнительных поверхностей клина и седел. В задвижках этого типа повышена надежность при высоких температурах (вследствие уменьшения опасности неравномерного теплового расширения, приводящего к заклиниванию затвора). Однако опасность заклинивания в закрытом положении полностью не устранена. Крупным недостатком задвижек этого типа является повышенный износ уплотнительных поверхностей клина и седел, так как они вступают во взаимный контакт значительно раньше, чем в задвижках с цельным клином.

Задвижки с составным клином. Применяются они тогда, когда требуется высокая степень герметичности прохода при закрытом положении затвора.

Затвор задвижки с составным клином состоит из двух дисков, между которыми размещен разжимной элемент, выполненный в виде грибка с шаровой поверхностью. Грибок упирается в подпятник, закрепленный на другом диске. Во избежание распада диски при открывании прохода размещают в обойме. Усилие от нажатия шпинделя передается при помощи внутреннего диска.

Часто встречаются конструкции без подпятника. При этом грибок (см. рисунок 12.6) сферическим концом упирается во внутреннюю поверхность одного из дисков. Усилие от привода передается через обойму на внутренний диск. При движении шпинделя из открытого положения в закрытое диски не разжимаются и трение между седлами и затвором отсутствует. В момент касания нижних кромок дисков с седлами усилие привода передается на разжимной элемент и проход герметизируется. Выпускаемые промышленностью задвижки с составным клином имеют только выдвижной шпиндель.

1 – диски; 2 – уплотнительное кольцо; 3 – обойма; 4 – внутренний диск; 5 – грибок.

Рисунок 12.6. - Задвижка с составным клином.

Несмотря на сложность конструкции и, следовательно, высокую стоимость, а также нежесткий затвор, эти задвижки имеют явные преимущества перед другими типами задвижек: незначительный износ уплотнительных поверхностей затвора и седел; высокая герметизация прохода в закрытом положении; меньшее усилие привода, необходимое для закрытия задвижки.

Отсутствие трения уплотнительных поверхностей на всем пути движения затвора позволяет в двухдисковых задвижках уплотнить проход с помощью эластичных колец, смонтированных на дисках затвора.

Шиберные задвижки.

В задвижках этого типа уплотнительные поверхности седел параллельны друг другу и расположены перпендикулярно к направлению потока рабочей среды. Затвор в этих задвижках обычно называют "диском", "шибером" или "ножом".

Преимуществами такой конструкции являются: простота изготовления затвора; легкость сборки, разборки и ремонта; отсутствие заедания затвора в полностью закрытом положении.

Шиберные задвижки по своей конструкции подразделяются на однодисковые и двухдисковые.

Однодисковые шиберные задвижки (см. рисунок 12.7). В них затвор

1 – шибер; 2 – патрубок; 3 – корпус; 4 – узел крепления шпинделя и шибера; 5 – седло; 6 – шпилька; 7 – уплотнительное кольцо; 8 – прокладка; 9 – верхняя крышка; 10 - набивка сальника; 11 – нажимная планка; 12 – шпиндель; 13 – кожух; 14 – выходной элемент привода; 15 – стойка.

Рисунок 12.7 - Шиберная однодисковая задвижка.

(шибер) выполнен в виде щита с кольцом, имеющим в нижней части отверстие, равное диаметру прохода, которое при закрытии задвижки смещается вниз. Проход перекрывается глухой частью шибера. Герметичность прохода обеспечивается прижатием затвора давлением среды к уплотнительным поверхностям седла со стороны низкого давления.

Основными недостатками шиберных задвижек являются: большой расход энергии на открытие и закрытие, вызванный тем, что на всем пути движения привод преодолевает трение между уплотнительными поверхностями седел и затвора; значительный износ уплотнительных поверхностей.

Не смотря на перечисленные недостатки шиберные задвижки достаточно легко обслуживаются и ремонтируются. Величина износа очень легко компенсируется при ремонте путем смещения (вывертывания) седел. Шиберные задвижки применяют в основном тогда когда не требуется высокая герметичность прохода.

Шиберные задвижки типа УК 19001 по ТУ 647 РК-05772090-032-97 предназначены для установки в качестве запорных устройств на линейной части магистральных нефтепроводов и на технологических трубопроводах НПС .

Конструкция шиберной задвижки предусматривает постоянное расчетное прижатие седла к шиберу с помощью специальных пружин, не зависящее от перепада давления на шибере. Шибер выполнен из углеродистой стали с покрытием, обеспечивающим надежность при работе в нефти. Конструкция задвижек обеспечивает возможность нагнетания герметизирующей смазки в сальниковый узел и замену сальника шпинделя без снижения рабочего давления в трубопроводе.

Корпус задвижки разгружен от избыточного давления, создаваемого тепловым расширением транспортируемой среды.

Надежность этих шиберных задвижек соответствует современным требованиям.

Выпускаются также двухдисковые параллельные задвижки, которые обеспечивают хорошее уплотнение в затворе в закрытом положении. Их применяют тогда когда требуется надежная герметизация прохода.

Двухдисковые параллельные задвижки бывают с выдвижным и невыдвижным шпинделем.

Задвижки с эластичным уплотнением затвора.

Сложность изготовления задвижек с металлическими уплотнительными поверхностями затворов, для которых требуется монтаж седел, притирка уплотнительных поверхностей затвора, обеспечение соосностей, высокая точность изготовления направляющих т. п., заставляет иногда при низких температурах транспортируемых сред и невысоких рабочих давлениях применять более простую и экономичную конструкцию задвижек с уплотнительными поверхностями затвора, изготовленными из эластичного уплотняющего материала – резины, фторопласта, пластмассы и др. В таких задвижках, как правило, седел нет. В качестве уплотнения используют механически обработанные поверхности корпуса. Затвор выполнен в виде двух дисков, подвешенных на резьбовой втулке. Диски облицованы эластичным материалом.

Задвижки с выдвижным и не выдвижным шпинделем.

Размещение системы винт – гайка в задвижке в идеальном случае должно было бы обеспечить одновременно ее компактность и легкий доступ к резьбовой паре для подачи смазки и проведения текущего ремонта без разборки.

С точки зрения компактности предпочтительнее размещать ходовую гайку непосредственно на затворе. При этом шпиндель совершает только вращательное движение и поэтому задвижка имеет минимальную высоту, определяемую только ходом затвора и длиной сальника. Такая конструкция задвижек получила название "задвижки с невыдвижным шпинделем".

Однако такое конструктивное решение имеет следующие недостатки: резьбовая пара находится непосредственно под воздействием рабочей среды; ухудшается работа сальника (вращательное движение шпинделя увеличивает износ сальниковой набивки); доступ для осмотра и ремонта системы винт – гайка затруднен (для ремонта пары требуется перекрывать трубопровод., спускать среду и разбирать задвижку).

Учитывая недостатки задвижек с невыдвижным шпинделем, стали применять конструкции, в которых ходовая гайка закреплена в маховике или непосредственно в приводе, т.е. вне рабочей полости корпуса. В этих конструкциях шпиндель совершает только поступательное движение и перемещается вместе с затвором, как бы выдвигаясь из задвижки. Поступательное движение шпинделя обеспечивает наилучший режим работы сальникового уплотнения. Конструкция позволяет заменять изношенную ходовую гайку, не демонтируя задвижку, а иногда и не останавливая технологический процесс. Тем не менее в конструкциях с выдвижным шпинделем имеются следующие недостатки: увеличение высоты задвижки (за счет выхода шпинделя); необходимость защищать резьбовую часть шпинделя от загрязнения. коррозии и механических повреждений.

Запорные клапаны.

К запорным клапанам относят запорную арматуру с поступательным перемещением затвора в направлении, параллельном потоку транспортируемой среды. Затвор (золотник) перемещается при помощи системы винт – гайка. Запорный клапан применяют для перекрытия потоков транспортируемых сред в трубопроводах с Ду до 300 мм при рабочих давлених до 2500 кГс/см2 и температурах сред от – 200 до + 4500С.

Как правило, шпиндель запорного клапана совершает одновременно и вращательное и поступательное движение, т. к. его ходовая гайка жестко закреплена в верхней части бугельной стойки, что ухудшает работу сальникового уплотнения. Золотник по форме представляет собой тело вращения с плоским основанием, на котором закреплено уплотнительное кольцо, изготовленное из металла. резины или фторопласта. Золотник соединяется со шпинделем шарнирно и отрывается от седла без скольжения, благодаря чему исключается повреждение уплотнительных поверхностей.

По сравнению с другими видами запорной арматуры запорные клапаны имеют следующие преимущества: возможность работы при высоких перепадах давлений на золотнике и при больших величинах рабочих давлений; простота конструкции, обслуживания и ремонта в условиях эксплуатации; меньший ход золотника (по сравнению с задвижками), необходимый для полного перекрытия прохода; относительно небольшие габаритные размеры и масса при малых условных диаметрах; применение при высоких и сверхнизких температурах рабочей среды; герметичность перекрытия прохода; использование в качестве регулирующего устройства; установка на трубопроводе в любом положении (вертикальная, горизонтальная); исключение возможности возникновения гидравлического удара.

К недостаткам, общим для всех конструкций запорных клапанов, относятся: высокое гидравлическое сопротивление по сравнению с другими запорными устройствами; невозможность применения на потоках сильнозагрязненных сред, а также на средах с высокой вязкостью; большая строительная длина; подача среды только в одном направлении. определяемом конструкцией запорного клапана; большие габаритные размеры и масса и, следовательно. большую стоимость при условных проходах 250 мм и более.

Запорные клапаны классифицируют по нескольким признакам. По конструкции корпуса их подразделяют на проходные. прямоточные, угловые, и смесительные. По назначению их классифицируют на запорные, запорно-регулирующие и специальные. По конструкции затворов их подразделяются на тарельчатые, пробковые и диафрагмовые. По способу уплотнения шпинделя запорные клапаны подразделяются на сальниковые, сильфонные и диафрагмовые.

Проходные запорные клапаны .

Проходными называют запорные клапаны, которые имеют корпус с соосными или параллельными патрубками (см. рисунок 12.8). Они предназначены для установки на прямолинейных трубопроводах.

Проходные запорные клапаны имеют следующие недостатки: относительно высокое гидравлическое сопротивление, обусловленное тем, что поток рабочей среды делает по крайней мере два оборота; наличием зоны застоя, которая является местом скопления различных включений; большие строительные размеры, обусловленные их конструкцией; сложность конструкции корпуса и относительно большую массу.

1 – корпус; 2 – седло; 3 – золотник; 4 – шпиндель; 5 – крышка; 6 – сальник; 7 – стойка; 8 – ходовая гайка; 9 – маховик.

Рисунок 12.8 - Проходной запорный клапан с золотником тарельчатого типа

Прямоточные запорные клапаны.

К прямоточным относятся запорные клапаны, корпус которых имеет соосные патрубки, а ось шпинделя расположена под углом к оси прохода (см. рисунок 12.9).

Преимущества запорных клапанов этого типа по сравнению с проходными следующие: относительно малое гидравлическое сопротивление: компактность конструкции; отсутствие зон застоя.

Недостатки прямоточных запорных клапанов – большая по сравнению с проходными строительная длина и относительно большая масса.

В представленной на рисунке 12.9 конструкции крышка крепится к корпусу вместе со стойкой. Сальниковое устройство обычной конструкции с нажимным фланцем. На стойке жестко посажена ходовая гайка. Наиболее интересным в рассматриваемой конструкции является то. что узел соединения (сцепка) штока со шпинделем вынесен за пределы корпуса. Таким образом, шпиндель вращаясь и перемещаясь поступательно, передает штоку, а с ним и золотнику только поступательное движение. Этим устраняется вращение золотника, а также улучшаются условия работы сальниковой набивки. Золотник состоит из тарелки с приваренным к ней полым штоком. Этим облегчается конструкция затвора.

1 – корпус; 2 – золотник; 3 – шток; 4 – крышка; 5 – сальник; 6 - стойка; 7 – маховик;8 – ходовая гайка; 9 – шпиндель; 10 – сцепка.

Рисунок 12.9 - Прямоточный запорный клапан

Угловые запорные клапаны .

Угловые запорные клапаны имеют корпус с перпендикулярно расположенными патрубками, причем один из патрубков может быть соосен или параллелен оси дроссельной пары (седла и золотника). Запорные клапаны этого типа предназначены для соединения трубопроводов, расположенных перпендикулярно друг другу.

Эти запорные клапаны по сравнению с проходными более компактны по конструкции, меньше по массе и не имеют застойных зон в корпусе. К недостаткам угловых запорных клапанов можно отнести: относительно высокое (по сравнению с прямоточными) гидравлическое сопротивление и большую высоту.

Между патрубками проходит ребро жесткости, которое воспринимает изгибающие усилия от трубопроводов при монтаже запорного клапана.

Смесительные вентили.

Смесительные вентили предназначены для смешения двух потоков жидкой среды с целью стабилизации ее температуры, концентрации реагентов, разжижения основной среды, введения в нее катализатора, поддержания качества и т. д. Такие задачи часто решают при помощи двух вентилей, через которые в смесительный резервуар подаются потоки составных частей среды. Эти схемы получаются громоздкими, дорогими и сложными в эксплуатации. При регулировании потоков приходится управлять сразу двумя вентилями.

Проще использовать смесительные вентили. в которых два потока смешиваются непосредственно в корпусе одного вентиля. Их применение дает высокий экономический эффект за счет того, что вместо двух вентилей и специального смесителя применяют только один вентиль. Корпус смесительного вентиля имеет трехходовую конструкцию (с тремя патрубками). Два входных патрубка соосны, через них подаются потоки смешиваемых сред. Ось третьего выходного патрубка перпендикулярна осям входных патрубков и, как правило, соосна с осью дроссельной пары. При помощи патрубка вентиль соединяется с резервуаром.

Запорно-регулирующие клапаны.

Все выше рассмотренные конструкции относятся к запорным, которые надежно работают лишь в двух положениях – полностью закрытом и полностью открытом положении. Однако на практике часто требуется арматура, которая обеспечивала бы возможность ручного или дистанционного управления подачей продукта путем изменения гидравлического сопротивления дроссельной пары, а также достаточно надежно перекрывала трубопровод.

Идеальным типом запорной арматуры для широкого применения в подобных условиях являются запорно-регулирующие клапаны (см. рисунок 12.10).

Конструкция запорно-регулирующих клапанов в основном не отличается от обычных конструкций проходных или угловых запорных клапанов, однако им присущи следующие особенности: золотник имеет профилированную рабочую поверхность (чаще всего применяют золотники пробкового типа); золотник и седло имеют хорошо обработанные и притертые уплотняющие кромки; направляющая движение шпинделя должна быть четко сцентрирована с седлом; золотник и седло в целях повышения надежности изготовляют из специальных сплавов.

В клапанах, работающих при высоких перепадах давлений рабочей среды, профилированная поверхность золотника подвержена воздействию значительных скоростей потока и при возникновении кавитации или загрязненности среды она быстро изнашивается. В условиях эксплуатации изготовить новый золотник достаточно сложно, поэтому на золотниках пробкового типа рабочую поверхность обычно получают наплавкой твердыми сплавами, которые значительно увеличивают срок службы золотников, хотя и усложняют технологию их производства. При малых диаметрах условных проходов вентили имеют золотники в виде конуса, которые в практике называют игольчатыми.

а б

а – запорный; б – регулирующий с уплотнительной поверхностью в виде усеченного конуса

1 – корпус; 2 – плунжер; 3 -крышка; 4 – сальник; 5 – нажимная гайка; 6 – маховик.

Рисунок 12.10 - Запорно-регулирующие клапаны

Запорные клапаны специальных конструкций.

Эти запорные клапаны разделяют по следующим признакам: по параметрам среды (давление, температура, агрессивность и др.) и специальному назначению.

По параметрам среды запорные клапаны бывают: высокого давления, высоких температур, глубокого холода, и т. д.

По специальному назначению они подразделяются: для резервуаров (сливные) и для специальных сред (шлама, сыпучих, сред с высокой вязкостью и др.).

Запорные клапаны высокого давления изготовляют с диаметрами условных проходов от 3 до 125 мм, рассчитанные на рабочие давления до 2500 кГс/см2. Отличительными особенностями конструкции этих запорных клапанов являются: кованый корпус; подача среды под золотник для уменьшения воздействия на сальник; линзовое присоединение к трубопроводу; усиленная конструкция шпинделя и золотника; большая величина момента, необходимого для закрытия; увеличенная по сравнению с обычными запорными клапанами , высота; отсутствие вращения золотника вокруг оси. Золотник связан со шпинделем посредством штока. Шток присоединяется к шпинделю при помощи сцепки, конструкция которой исключает вращение штока вокруг оси.

Диафрагмовые клапаны.

Диафрагмовым (или мембранным) называется клапан, у которого запорный элемент – эластичная диафрагма (мембрана), перекрывающая проход. Диафрагмовые запорные клапаны предназначены для перекрытия потоков сред при невысоких температурах (до 100 – 1500С) и невысоких рабочих давлениях. К их преимуществам относятся: простота конструкции; отсутствие сальника; отсутствие зон застоя; невысокое гидравлическое сопротивление; небольшие габаритные размеры и масса.

Основной недостаток клапанов этого типа – относительно небольшой срок службы мембраны. Применение мембраны в качестве запорного элемента, который одновременно служит и для разделения рабочей полости клапана с окружающей атмосферой, исключает необходимость в сальниковом устройстве, что существенно упрощает конструкцию. Но появляется проблема полного исключения вращательного движения шпинделя во избежание «скручивания» мембраны, которое может привести к ее разрыву. Для предотвращения разрыва мембраны от давления среды предусмотрена телескопическая опора из колец. Мембрана прижимается к корпусу крышкой , на которой крепится ходовая гайка, связанная с маховиком.

Сильфонные клапаны.

Сильфонными называют клапаны, в которых в качестве уплотнительного элемента, разделяющего рабочую полость и окружающую атмосферу в месте выхода шпинделя, используют сильфоны (прочный гофрированный элемент).

Сильфонный запорный клапан состоит из литого корпуса, на котором закрепляется крышка. Уплотнение и центрирование между крышкой и корпусом осуществляется при помощи фланца промежуточного корпуса, внутри которого смонтирован сильфон, который с одной стороны соединен со шпинделем, а с другой – приварен к верхней части промежуточного корпуса. Последний, таким образом, является защитой сильфона от механических повреждений при эксплуатации и препятствует проникновению среды в полость крышки даже при прорыве сильфона.

Сильфонные клапаны предназначены для работы в средах, утечка которых в окружающую атмосферу недопустима из-за ее высокой стоимости, агрессивности, токсичности, взрыво- или пожароопасности, ядовитости и др. Основные преимущества сильфонных клапанов – полное исключение утечки рабочей среды и надежность уплотнительного элемента.

К недостаткам, общим для всех конструкций сильфонных клапанов, относятся: высокие сложность и стоимость конструкции; трудность ремонта в условиях эксплуатации и большая величина усилия, необходимого для перекрытия потока.

Сильфонные клапаны должны удовлетворять следующим требованиям:

  • в целях исключения разрушения сильфона шпиндель должен совершать только поступательное движение, вращение его вокруг оси недопустимо;

  • в крышке должно быть предусмотрено дополнительное аварийное сальниковое устройство, препятствующее утечке среды из рабочей полости вентиля в случае усталостного разрушения сильфона;

  • шпиндель должен быть надежно связан с сильфоном;

  • при перемещении шпинделя сильфон должен работать только на сжатие;

  • давление среды допустимо только снаружи сильфона;

  • уплотнение между сильфоном, корпусом и шпинделем должно быть надежным и герметичным;

  • золотник и седло должны быть сцентрированы во избежание перекоса сильфона.

Существенным недостатком, общим для всех конструкций сильфонных клапанов, является небольшое допустимое сжатие сильфона. для увеличения хода соединяют несколько сильфонов, что резко снижает надежность клапана и невыгодно из-за увеличения размера его по высоте.

Краны.

Кран – это запорное устройство, в котором запорный элемент (пробка) имеет форму тела вращения с отверстием для пропуска потока, для перекрытия которого вращается вокруг своей оси.

В зависимости от геометрической формы уплотнительных поверхностей пробки и корпуса (затвора) краны разделяют на три основных типа: конические (см.рисунок 12.11 ( а)), цилиндрические (см. рисунок 12.11, (б)) и шаровые или сферические (см. рисунок 12.11, в).

в

а – конический, б – с цилиндрическим затвором, в – шаровой цельносварной

Рисунок 12.11 - Краны

Однако краны классифицируют и по другим конструктивным признакам, например: по способу создания удельного давления на уплотнительных поверхностях, по форме окна прохода пробки, по числу проходов, по наличию или отсутствию сужения прохода, по типу управления и привода, по материалу уплотнительных поверхностей и т. д.

Конические краны.

Конусность пробки (корпуса) конических кранов в практике отечественного и зарубежного арматуростроения принимают обычно 1: 6 или 1 :7. При назначении конусности руководствуются следующими соображениями: чем меньше угол конусности, тем меньшее осевое усилие вдоль пробки требуется для создания на уплотнителных поверхностях необходимого удельного давления, обеспечивающего герметичность. Однако при этом возрастает опасность заклинивания пробки в корпусе и возможность задира уплотнительных поверхностей. При увеличении угла конусности наблюдается обратная картина. Поэтому краны из материалов, имеющих хорошие антифрикционные свойства (например, чугун, латунь, бронза), имеют конусность 1 : 7, при этом легче создать необходимое удельное давление на уплотнительных поверхностях и получить требуемую герметичность.

Натяжные краны – из конических кранов простейшие по своей конструкции.

Их подразделяют по способу создания удельного давления между корпусом и пробкой. В кранах с затяжкой через резьбовое соединение упорная шайба садится на ось пробки и вращается вместе с ней. При затяжке гайки шайба образует опору, в которую упирается гайка, и передает усилие затяжки на нижний торец корпуса. Кроме того, на шайбе имеются выступы, которые вместе с упорами на корпусе крана ограничивают поворот пробки в пределах 900 (от открытого до закрытого положения).

В натяжном кране с пружиной усилие затяжки создается пружиной, упирающейся в крышку.

Сальниковые краны характеризуются тем, что необходимые для герметичности удельные давления на конических уплотнительных поверхностях корпуса и пробки создаются при затяжке сальника. Усилие затяжки сальника передается на пробку, прижимая ее к седлу

Сальниковые краны обеспечивают более надежную защиту от утечки рабочей среды в атмосферу (благодаря сальнику), но имеют быстро изнашивающийся элемент – мягкую набивку. В связи с этим сальниковые краны применяют на более высокие параметры среды по сравнению с натяжными кранами. Однако сальниковые краны требуют более частого обслуживания (подтяжка сальника по мере износа набивки и смена набивки при необходимости).

Краны со смазкой. При давлениях среды свыше 40 кГс/см2 на пробку крана действуют большие усилия, прижимающие ее к уплотнительной поверхности корпуса.

Кроме того, при высоких давлениях среды удельные давления на уплотнительных поверхностях возрастают до таких значений, при которых может произойти задир уплотнительных поверхностей. Эти причины, а также необходимость в защите уплотнительных поверхностей от коррозии вызвали появление кранов со смазкой.

Смазку набивают в центральный канал хвостовика пробки. При завинчивании болта смазка через горизонтальное сверление продавливается в кольцевую уплотнительную проточку на пробке, а оттуда через четыре вертикальные узкие канавки на корпусе крана в канавки, расположенные по обе стороны окна пробки.

В процессе работы крана смазка частично выдавливается в проход и вымывается средой, поэтому ее необходимо периодически добавлять.

Краны с подъемом пробки. В них, в отличие от обычных кранов, перед поворотом пробка отрывается от корпуса, а после поворота прижимается к нему. Иногда в практике такие краны называют кран-задвижка.

Такое устройство позволяет решить сразу несколько задач:

  • уменьшается крутящий момент, необходимый для поворота пробки;

  • пробка поворачивается при отсутствии контакта ее с корпусом, что исключает опасность задирания уплотнительных поверхностей;

  • усилие прижатия пробки к корпусу и удельные давления на уплотнительных поверхностях регулируются в очень широких пределах независимо от затяжки сальника.

Цилиндрические краны.

Краны с цилиндрическим затвором проще конических в изготовлении, а их уплотнительные поверхности не нуждаются в притирке ввиду простоты технологической доводки цилиндрических поверхностей.

По конструктивным признакам цилиндрические краны можно разделить на две группы – краны с металлическим и эластичным уплотнениями.

Шаровые краны.

Наиболее распространены на МН шаровые краны.

Это краны с пробкой в виде шара со сквозным отверстием для прохода среды для различных условий работы. По принципу герметизации запорного органа их можно разделить на две основные разновидности: с плавающим шаром и с шаром на опорах. Применяются иногда и конструкции с плавающими уплотнительными кольцами.

Шаровые краны отличаются простотой конструкции, прямоточностью, низким гидравлическим сопротивлением, постоянством взаимного контакта уплотнительных поверхностей, благодаря сферической форме имеют меньшие габаритные размеры и массу, большую прочность и жесткость.

У шаровых кранов имеется принципиальное преимущество перед коническими: даже при небольшом несовпадении радиусов сферы пробки и уплотнительного кольца контакт между ними происходит по окружности и обеспечивает гораздо лучшую герметичность.

Изготовление шаровых кранов менее трудоемко. В шаровых кранах, в отличие от конических, уплотнительных поверхностей в корпусе нет, они есть только на уплотнительных кольцах, размеры которых во много раз меньше, чем размеры корпусов конических кранов. Кроме того, в шаровых кранах с кольцами из пластмассы вообще отпадает необходимость в притирке уплотнительных поверхностей. Пробку в шаровых кранах обычно хромируют или полируют.

Шаровые краны отличаются большим разнообразием конструкций. Однако их можно разбить на два основных типа: краны с плавающей пробкой и краны с плавающими кольцами.

Шаровые краны с плавающей пробкой.

Эти краны (см. рисунок 12.12. ) просты по конструкции и надежны в работе. Удельное давление на уплотнительных кольцах создается как вследствие разности давления среды до и после затвора, так и в результате затяжки крышки резьбой или болтами. Усилие затяжки крышки передается на уплотнение. Пробка соединена со штоком таким образом, что она может свободно перемещаться по отношению к нему. Это обеспечивает "плавание" пробки – при перепаде давления среды она плотно прижимается к уплотнительному кольцу со стороны более низкого давления. При затяжке крышки также происходит упругая деформация системы уплотнительные кольца – пробка, благодаря чему обеспечивается непрерывное удельное давление на уплотнительных поверхностях. Краны с плавающей пробкой бывают двух типов: с металлическими кольцами со смазкой, а также с неметаллическими

1- корпус; 2– пластмассовое уплотнительное кольцо; 3– пробка; 4– накидная гайка; 5– резиновое уплотнительное кольцо; 6– крышка.

Рисунок 12.12.- Шаровой кран с плавающей пробкой и пластмассовыми уплотнительными кольцами

кольцами из пластмасс, резин, графитопластовых и других материалов. Краны первого типа применяют на трубопроводах с большими проходами и высокими давлениями среды. Краны с неметаллическими кольцами применяют в основном на небольших проходах с небольшими давлениями среды.

Основным недостатком кранов этой конструкции является повышенный износ уплотнительного кольца со стороны низкого давления.

Шаровые краны с плавающими кольцами.

Основной недостаток шарового крана с плавающей пробкой исправлен в конструкции шарового крана с плавающими кольцами.

Недостаток шаровых кранов с плавающими пробками – сложность конструкции по сравнению с кранами с плавающей пробкой, а также высокие требования к точности изготовления из-за наличия подшипников.

Цельносварной шаровой кран.

Цельносварной шаровой кран по конструкции относится к кранам с плавающими кольцами (см рисунок 12.11.в). Этот кран считается образцовым в производстве шаровых кранов. Каждый цельносварной шаровой кран сконструирован и изготовлен для длительной эксплуатации, что достигается кованым шаровым затвором, долговечным уплотнением корпуса, самосмазывающимися уплотнениями штоков, установленных на подшипниках. Цельносварные шаровые краны испытываются при температуре –600С и они доказали свою надежность при долголетней эксплуатации.

Цельносварной шаровой кран выпускается типоразмерами от 150 до 700 мм на рабочее давление до 10Мпа.

Уплотнительные кольца в этих кранах изготовляются из резины, фторопласта или металла. Краны с малым условным диаметром прохода обычно имеют ручное управление, краны с большим диаметром прохода снабжаются пневмогидроприводом.