Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
systems_engineering_thinking_2015.pdf
Скачиваний:
328
Добавлен:
28.03.2016
Размер:
8.09 Mб
Скачать

Системноинженерное мышление

TechInvestLab, 2 апреля 2015

90

http://www.gilb.com/dl97).

Порядок бьёт класс (в больших проектах упорядоченная работа команды заурядных специалистов бьёт беспорядочную работу высококлассных звёзд).

Тем не менее наука и инженерия тесно связаны: эвристики в более простых системах заменяются научными теориями, в том числе в виде компьютерных моделей (разница: правильно применённая теория даёт надёжный ответ, а эвристика, возможно, врёт), а место для метода проб и ошибок смещается в сторону более сложных систем, которые плохо описываются наличными научными теориями.

Формальные (теоретические, следующие законам логики, а не чисто эвристические

— хотя и те и другие могут быть подтверждены экспериментами) описания инженерных систем позволяют проводить формальный анализ: находить ошибки без создания системы, а часто и вычислять необходимые или оптимальные характеристики системы. Очень дорогой метод проб и ошибок с его бесконечным циклом догадок и экспериментов при помощи формальных описаний превращается в совсем другой метод работы, число проб становится в разы и разы меньше. Источником же полезных формализмов (методов описаний самых разных феноменов) является как раз наука. Число формализов растёт, число найденных эвристик тоже растёт, поэтому со временем растёт и уровень инженерии.

В связи с этим любые достижения в инженерии по предложению Billy Koen нужно оценивать не по абсолютной шкале, а на конкретный момент времени, в соответствии с накопленным на этот момент объёмом научного и эвристического инженерного знания — и это “текущее состояние инженерии” Billy Koen предложил называть SoTA (state-of-the-art). Инженерный проект плох, ежели он не использует всей полноты научного и эвристического знания, накопленного на конкретный момент времени. Со временем объем знаний растёт, и инженерные проекты становятся более и более сложными, достигая невозможных для предыдущего времени характеристик.

Наука как “научение птиц полёту”

Существует мнение, что наука для практической деятельности бесполезна. Практики добиваются успеха не на основе научных знаний, а на основе “возни”

(tinkering, ср. “Hу is tinkering with a car” — “он возится с автомобилем”).

Эта точка зрения была развёрнута в книге Насима Талеба “Антихрупкость”. Он сравнивает учёных с теми, кто приходит к птицам и пытается научить их летать, давая знания по аэродинамике. Типичное высказывание в его книге на эту тему: “Никто не опасается, что ребенок, понятия не имеющий о разных теоремах из области аэродинамики и не способный решить уравнение движения, не сможет ездить на велосипеде”. Он защищает метод проб и ошибок, защищает эвристики. Он абсолютно прав. И он прав, когда пишет о создании реактивных двигателей: сначала было много проб и ошибок, потом только появилась теория, а не наоборот.

Тем не менее, исследования дают нам способ думать по-новому: осознанней, быстрее и надёжнее. Но не так, чтобы исследования вообще позволяли нам думать. Думаем мы и без них, но спонтанно, медленно и не слишком надёжно. Метод проб и ошибок всем хорош, кроме того что чрезвычайно дорог и долог. Если есть способ что-то физическое коротко описать, а потом работать с этим описанием-моделью, а не с самим физическим объектом, то так и нужно делать. Если вы учите ребёнка ездить на велосипеде, то вам особой науки не нужно. А если вы учите компьютер

Системноинженерное мышление

TechInvestLab, 2 апреля 2015

91

быть автопилотом на реактивном самолёте, то незамутнённым наукой методом проб и ошибок вы загубите слишком много реактивных самолётов.

Ещё один аргумент в пользу науки и компактных описаний появляется, когда вы замечаете, что в книжках Талеба ничего не говорится о коллективной работе. Когда речь идёт не о рынке, где “дальнее взаимодействие” (никто друг друга не знает, сделки между незнакомыми людьми) и где хорошо работают рассуждения Талеба, а когда мы хотим хорошее мышление передать кому-то другому, но не понимаем, из чего это мышление состоит, что передавать. Охота и собирательство талантливых людей хороши, но переход к осёдлому земледелию даёт скачок в производительности труда — выращивать талантов дешевле, чем их выискивать.

Так что сначала нам нужна какая-то наука, чтобы инженерные знания компактно описать — и уже после этого мы их можем передать.

Ещё один аспект инженерной работы — она не делается одиночками. Нужна координация усилий сотен, тысяч и даже десятков тысяч людей. Все эти люди должны как-то договариваться между собой. Как они могут договориться, если каждый про свою часть дела может рассказать примерно столько же, сколько едущий на велосипеде мальчик про свою езду “я чувствую, что я держу равновесие и я чувствую, что на большой скорости надо бы пригнуться”? Компактные описания нам нужны, чтобы люди могли иметь одинаковое описание того, что они делают, чтобы не возникло проблемы строительства Вавилонской башни.

Излагаемый в нашей книге подход к системноинженерному мышлению и действию совершенно необязателен для инженеров-одиночек, среди одиночек всегда найдётся Кулибин или Левша. Но вот если речь пойдёт о какой-то более-менее масштабной коллективной инженерной деятельности, то синхронизация способов обсуждения проекта может сэкономить много-много времени — все ведь помнят проблему, возникшую при строительстве Вавилонской башни? Мы должны научиться описывать другим людям, что мы делаем и почему, чтобы другие люди могли к нам присоединиться.

Конечно, уметь что-то описывать и в инженерии, и в менеджменте (и даже в литературе) вовсе не означает то, что вы опишете что-то ценное и важное. Графоманам никогда не получить Букеровскую премию, хотя они умеют писать. Научиться думать об архитектуре или проектном предложении, научиться компактно “по науке” записывать свои мысли вовсе не означает, что вы что-то придумаете интересное. “Думать и придумать” в этом плане похожи на “учить и выучить”, “делать и сделать” — процесс ничто, результат всё. Но если не думать, то и не придумаешь. Если не учить, то и не выучишь. Если не делать, то и не сделаешь. Процесс важен, без него не будет результата.

Так что для начала нам нужна инженерная наука (engineering science), хотя мы точно знаем, что инженерия (”инжиниринг”, как сейчас всё чаще говорят) — это не наука. Но нам нужны компактные описания инженерии и менеджмента как минимум для того, чтобы договариваться об инженерии и менеджменте с другими людьми.

И нам нужна наука о мышлении, хотя мы точно знаем, что само мышление — это не наука. Но нам нужны компактные описания мышления, чтобы договариваться о них с другими людьми, чтобы реализовать коллективное мышление. Построить такую ракету, чтобы она долетела до Марса или даже крошечной по космическим меркам кометы — для этого метода проб и ошибок явно недостаточно, но системные инженеры строить такие ракеты научились.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]