Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Руководство по физхимии часть 2.doc
Скачиваний:
306
Добавлен:
14.02.2015
Размер:
3.48 Mб
Скачать

2.4 Скорость электрохимической реакции

В отличие от обычной гомогенной химической реакции, протекающей во всех точках объема раствора, где есть реагирующие вещества, электрохимическая реакция идет на границе раздела между электродом и раствором, то есть является гетерогенной реакцией. Как и всякая гетерогенная реакция, она является многостадийной. Из множества последовательных стадий выделим три главные стадии: 1) подвод вещества к электроду; 2) собственно электрохимическая стадия, связанная с переносом электронов или ионов через границу раздела фаз (стадия разряда - ионизации); 3) образование конечного продукта процесса (образование и удаление молекул газа, образование кристаллической решетки твердого тела, отвод иона от поверхности в глубь раствора).

Первая и третья стадии имеют одинаковые закономерности и называются стадиями массопереноса.

Скорость многостадийного процесса определяется скоростью самой медленной стадии, которая называется лимитирующей. В данном разделе будем рассматривать электродный процесс, где лимитирующей стадией является вторая стадия, то есть стадия разряда – ионизации.

Рассмотрим сначала скорость электрохимической реакции, протекающей на металлическом электроде, погруженном в раствор его собственной соли. При установлении равновесия при равновесном потенциале протекание реакций окисления (анодный процесс) и восстановления (катодный процесс) не прекращается, но скорости этих реакций равны. При этом не происходит макроскопических изменений состава и массы отдельных фаз системы. Протекание процесса, приводящего к макроскопическим изменениям, возможно лишь при потенциале отличном от равновесного, когда скорости окисления и восстановления не равны друг другу. Разность этих скоростей и будет общей скоростью процесса, которая тем больше, чем больше смещен потенциал от равновесного.

Скорость гетерогенной реакции на единице поверхности может быть выражена уравнением

,

где К – константа скорости; Е – энергия активации; С – концентрация реагирующего вещества в слое жидкости, прилегающем к поверхности.

Скорость процесса измеряется числом ионов, переходящих из фазы в фазу с единицы поверхности в единицу времени. Поэтому скорость окисления (υа ) и восстановления (υk) можно измерять плотностью тока.

Скорость восстановления, катодный процесс:

(2.15)

Скорость окисления, анодный процесс:

(2.16)

В уравнение (2.16) в явном виде не входит концентрация раствора, так как активность твердого металла равна единице и во времени не меняется (в случае растворения металла).

2.4.1 Поляризационные кривые

В уравнениях (2.15 и 2.16) энергия активации электрохимических реакций зависит от сдвига потенциала от равновесного. В этом заключается важнейшая особенность электродных реакций по сравнению с обычными химическими. Изменяя потенциал, можно плавно изменить энергию активации и скорость реакции. В обычных же химических реакциях невозможно непосредственно влиять на энергию активации.

Учитывая связь энергии активации и сдвига потенциала, можно получить уравнения зависимости скорости реакции от сдвига потенциала от равновесного:

Эти величины можно представить графически в виде, так называемых, частных поляризационных кривых. По оси абсцисс отложен потенциал, отсчитанный от водородного нуля. По оси ординат - плотность тока анодного и катодного, то есть скорости анодного и катодного процессов.

Рисунок 2.6 - Поляризационные кривые: частные (сплошные линии) и суммарная (пунктирная линия)

При φ = φравн. ik = ia = io (ток обмена).

Суммарная скорость равна 0. При сдвиге потенциала от равновесного в положительную сторону ia > ik, суммарный процесс будет анодным со скоростью iA = ia - ik. При сдвиге потенциала в отрицательную сторону от равновесного преобладать будет катодный процесс, и суммарная скорость будет iK = ik - ia.

Суммарные скорости дают суммарную поляризационную кривую (пунктир на рисунке 2.6).

Замерить катодный и анодный токи ik и ia невозможно. Амперметр замеряет суммарный анодный, iA, или катодный, iK, ток. При φ = φравн. амперметр покажет отсутствие тока.