Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
КАСАТКИН.docx
Скачиваний:
181
Добавлен:
19.11.2019
Размер:
4.52 Mб
Скачать

4. Общие принципы анализа и расчета процессов и аппаратов

15

дому поршню. Время пребывания всех частиц в аппарате идеального вы­теснения одинаково.

. В аппаратах идеального смешения поступающие частицы сразу же полностью перемешиваются с находящимися там части­цами, т. е. равномерно распределяются в объеме аппарата. В резуль­тате во всех точках объема мгновенно выравниваются значения параметров, характеризующих процесс. Время пребывания частиц в аппарате идеаль­ного смешения неодинаково.

Реальные непрерывно действующие аппараты представляют собой аппараты промежуточного типа. В них время пребы­вания частиц распределяется несколько более равномерно, чем в аппара­тах идеального смешения, но никогда не выравнивается, как в аппаратах идеального вытеснения. Более подробно вопросы структуры потоков в ап­паратах и их влияния на протекание процессов рассмотрены в главах

  1. и X.

Процессы могут быть также классифицированы в зависимости от изме­нения их параметров (скоростей, температур, концентраций и др.) во вре­мени. По этому признаку процессы делятся на установившиеся (стационарные) и не у'становившиеся (нестацио­нарные, или переходные).

В установившихся процессах значения каждого из параметров, ха­рактеризующих процесс, постоянны во времени, а в неустановившихся — переменны, т. е. являются функциями не только положения каждой точки в пространстве, но и времени. Анализ характеристик неустановившихся процессов представляет наибольший интерес для целей автоматического регулирования. В химической технологии неустановившимися являются менее распространенные периодические процессы. Для непрерывных про­цессов изменение параметров во времени должно учитываться при изменении режима работы и в период пуска установок, однако этот период является кратковременным и в расчете им пренебрегают.

  1. Общие принципы анализа и расчета Щ 1 процессов и аппаратов

Расчеты процессов и аппаратов обычно имеют следующие основные цели: а) определение условий предельного, или равновесного, состояния системы; б) вычисление расходов исходных материалов и количеств полу­чаемых продуктов, а также количеств потребной энергии (тепла) и расхода теплоносителей; в) определение оптимальных режимов работы и соот­ветствующей им рабочей поверхности или рабочего объема аппаратов; г) вычисление основных размеров аппаратов.

Эти задачи определяют содержание и последовательность расчетов. Исходным этапом являются расчет и анализ статики процесса, т. е. рассмотрение данных о равновесии, на основе которых определяют н а - правление и возможные пределы осуществления процесса. Пользуясь этими данными, находят предельные значения параметров про­цесса, необходимые для вычисления его движущей силы (см. ниже). Затем составляют материальные и энергетические балансы, исходя из законов сохранения массы и энергии. Последующий этап представляет собой расчет кинетики процесса, определяющей его скорость. По данным о скорости и движущей силе при выбранном оптимальном режиме работы аппарата находят его рабочую поверхность или объем. Зная поверхность или объем, определяют основные размеры аппарата.

Материальный баланс. По закону сохранения массы масса поступаю­щих веществ ^ должна быть равна массе веществ ^ ^к, получаемых в результате проведения процесса, т. е. без учета потерь

16

Гл. 1. Общие сведения

Однако в практических условиях неизбежны необратимые, потери веществ, обозначая которые через ^ Сп, находим следующее общее выра­жение материального баланса:

£ = £

Материальный баланс составляют для процесса в целом или для отдель­ных его стадий. Баланс может быть составлен для системы в целом или по одному из входящих в нее компонентов. Так, материальный баланс процесса сушки составляют как по всему влажному материалу, поступаю­щему на сушку, так и по одному из его компонентов — массе абсолютно сухого вещества или массе влаги, содержащейся в высушиваемом мате­риале. Баланс составляют либо за единицу времени, например за 1 ч, за сутки (или за одну операцию в периодическом процессе) либо в расчете на единицу массы исходных или конечных продуктов.

На основе материального баланса определяют выход продукта, под которым понимают выраженное в процентах отношение полученного ко­личества (массы) продукта к максимальному, т. е. теоретически возмож­ному.

Иногда понятию выход придают иной смысл, рассчитывая условно выход как массу продукта, отнесенную к единице массы затраченного сырья. При этом в случае использования нескольких видов сырья выход выражают по отношению к какому-либо одному из них. Практический расход исходных материалов обычно превышает теоретический вслед­ствие того, что химические реакции не протекают до конца, происходят потери реагирующих веществ (через неплотности аппаратуры и т. д.).

Энергетический баланс. Этот баланс составляют на основе закона сохра­нения энергии, согласно которому количество энергии, введенной в про­цесс, равно количеству выделившейся энергии, т. е. приход энергии равен ее расходу. Проведение химико-технологических процессов обычно свя­зано с затратой различных видов энергии — механической, электрической и др. Эти процессы часто сопровождаются изменением энтальпии системы, в частности, вследствие изменения агрегатного состояния веществ (испа­рения, конденсации, плавления и т. д.). В химических процессах очень большое значение может иметь тепловой эффект протекающих реакций.

Частью энергетического баланса является тепловой баланс, который в общем виде выражается уравнением

£<?н= £<?■<+£<3п (1,2)

При этом вводимое тепло

^ <2н = + *2з

где — тепло, вводимое с исходными веществами; ф2 — тепло, подводимое извне, напри­мер с теплоносителем, обогревающим аппарат; — тепловой эффект физических или хими­ческих превращений (если тепло в ходе процесса поглощается, то этот член входит с отри­цательным знаком).

Отводимое тепло 2 складывается из тепла,- удаляющегося с конеч­ными продуктами и отводимого с теплоносителем (например, с охла­ждающим агентом).

В энергетическом балансе, кроме тепла, учитываются пркход и расход всех видов энергии, например затраты механической энергии на переме­щение жидкостей или сжатие и транспортирование газов.

На основании теплового баланса находят расход водяного пара, воды и других теплоносителей, а по данным энергетического баланса — общий расход энергии на осуществление процесса.

Интенсивность процессов и аппаратов. Для анализа и расчета процес­сов химической технологии необходимо, кроме данных материального и энергетического балансов, знать интенсивность процессов и аппаратов.

4. ОбЩие принципы анализа а расчета процессов и аппаратов

17

Все указанные выше основные процессы (гидродинамические, тепло­вые, массообменные и др.) могут протекать только под действием некото­рой движущей силы, которая для гидромеханических процессов определяется разностью давлений, для теплообменных — разностью тем­ператур, для массообменных — разностью концентраций вещества и т. д. Выражения движущей силы для различных видов процессов будут рас­смотрены в соответствующих главах курса.

В первом приближении можно считать, что результат процесса, харак­теризуемый, например, массой М перенесенного вещества или количеством переданного тепла, пропорционален движущей силе (обозначаемой в общем виде через А), времени т и некоторой величине А, к которой относят интенсивность процесса. Такой величиной может быть рабочая поверхность, через которую происходит перенос энергии или массы, рабочий.объем, в котором осуществляется процесс, и т. п. Следовательно, уравнение любого процесса может быть представлено в общем виде:

Коэффициент пропорциональности К в уравнении (1,3) характеризует скорость процесса и, таким образом, представляет собой кинетический коэффициент, или коэффициент скорости процесса (коэф­фициент теплопередачи, коэффициент массопередачи и т. д.). Коэффи­циент К отражает влияние всех факторов, не учтенных величинами, вхо­дящими в правую часть уравнения (1,3), а также все отклонения реаль­ного процесса от этой упрощенной зависимости.

Под интенсивностью процесса понимают результат его, отнесенный к единице времени и единице величины А, т. е. величину М!Ах, например энергию или массу, перешедшую в единицу времени через еди­ницу рабочей поверхности (либо перенесенной из одной фазы в другую в единице рабочего объема). Из уравнения (1,3) следует, что

Соответственно величину К можно рассматривать как меру интенсив­ности процесса — интенсивность, отнесенную к единице движущей силы.

Интенсивность процесса всегда пропорциональна движу­щей силе Д и обратно пропорциональна сопро­тивлению Я, которое является величиной, обратной кинетическому коэффициенту (например, гидравлическое сопротивление, термическое сопротивление, сопротивление массопередаче и т. д.). Таким образом, уравнение (1,3) может быть выражено также в форме

Из уравнения (1,3) или (1,5) находят необходимую рабочую поверх­ность или рабочий объем аппарата по известным значениям остальных величин, входящих в уравнение, или определяют результат процесса при заданной поверхности (объеме).

От интенсивности процесса следует отличать объемную интен­сивность аппарата — интенсивность, отнесенную к единице его общего объема. С увеличением объемной интенсивности уменьшаются размеры аппарата и снижается расход материалов на его изготовление. Однако объемная интенсивность может лишь до определенной степени служить мерой совершенства аппарата. Это объясняется тем, что объем­ная интенсивность аппарата связана с интенсивностью процесса, но с уве­личением коэффициента скорости процесса его интенсивность обычно воз­растает лишь до известного предела. Увеличение коэффициента скорости сверх некоторого значения часто сопровождается уменьшением движущей силы, что может привести к прекращению увеличения интенсивности

М = К.А тД

(1,3)

(1,4)

а ,5)

18

Гл. /. Общие сведения

процесса. Вместе с тем повышение интенсивности процесса не всегда сопровождается эквивалентным повышением объемной интенсивности аппарата, так как наряду с уменьшением его рабочего объема может потребоваться значительное увеличение вспомогательного объема, необ­ходимого, например, для сепарации фаз и т. п. Поэтому повышение объем­ной интенсивности аппаратов за счет увеличения скорости процесса не может являться самоцелью при их проектировании и эксплуатации.

При оценке конструкции аппарата или режима его работы решающее значение должны иметь технико-экономические харак­теристики данного аппарата. Оптимальным будет такой аппарат (или такой режим его работы), который обеспечит заданный результат с наименьшими затратами.

Затраты на осуществление процесса складываются из капитальных затрат и эксплуата­ционных расходов. Увеличение объемной интенсивности приводит к уменьшению размеров аппарата и соответственно к снижению капитальных затрат. Эксплуатационные же расходы при этом, как правило, возрастают, так как интенсификация процесса сопровождается обычно увеличением энергетических затрат. Минимум суммы затрат отвечает определен­ной объемной интенсивности аппарата, которая и является оптимальной.

Определение основных размеров аппаратов. Пользуясь уравнением (1,3), вычисляют основные размеры непрерывно действующего аппарата. Если известен объем ф среды, протекающей через аппарат в единицу вре­мени, и задана или принята ее линейная скорость т, то площадь по­перечного сечения 5 аппарата находят из следующего соотношения:

По величине 5 определяют один из основных размеров аппарата, на­пример для аппарата цилиндрической формы — его диаметр Э.

Другим основным размером является рабочая высота (или длина) Н аппарата. Из уравнения (1,3) находят рабочий объем аппарата (если А = = У) или поверхность -Р, требуемую для проведения процесса. Зная р и пользуясь зависимостью Р = аУ, где а •— поверхность, приходящаяся на единицу объема аппарата (удельная поверхность), рассчитывают его рабочий объем. По величине V определяют высоту Н, применяя соотно­шение V — 5Я. Рабочий объем V периодически действующего аппарата определяют как произведение заданной производительности (например, Ф мЧсек) и периода процесса т сек, включающего продолжительность самого процесса, а также время, затрачиваемое на загрузку, выгрузку' и другие вспомогательные операции:

У = <3т (1,7)

Моделирование и оптимизация процессов и аппаратов. Исследование процессов и аппаратов в масштабах и условиях промышленного производ­ства является, как правило, сложным, длительным и дорогостоящим. В связи с этим большое значение имеет моделирование1— изуче­ние закономерностей процессов на моделях при условиях, допускающих распространение полученных результатов на все процессы, подобные изученному, независимо от масштаба аппарата.

Общие принципы моделирования вытекают из теории подобия, основы которой изложены в главе II. Согласно требованиям этой теории, должны соблюдаться следующие правила моделирования:

  1. необходимо, чтобы процессы в модели и аппарате натурального раз­мера (оригинале) описывались одинаковыми дифференциальными урав­нениями;

  2. модель должна быть геометрически подобна оригиналу;