Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Текст.doc
Скачиваний:
21
Добавлен:
18.08.2019
Размер:
3.92 Mб
Скачать

II.4. Работа и мощность тока. Закон Джоуля-Ленца

Рассмотрим однородный проводник, по концам которого приложено напряжение . За время dt через поперечное сечение проводника переносится заряд . Так как ток представляет собой перемещение заряда dq под действием электрического поля, работа тока есть

(2.14)

Используя закон Ома для однородного участка цепи, формулу (2.14) можно представить в виде (2.15)

Мощность электрического тока – это быстрота совершения работы, то есть (2.16)

Единица мощности – ватт: 1 Вт – мощность, выделяемая в проводнике за 1 с при протекании тока силой 1 А.

Если ток протекает по неподвижному металлическому проводнику, то вся работа тока затрачивается на его нагревание и по закону сохранения энергии

Таким образом, с учетом (2.14) и (2.15) получим

(2.17)

Количество теплоты, выделяющееся за конечный промежуток времени от 0 до t при прохождении постоянного тока силой I найдем, интегрируя выражение (2.17): (2.18)

Таким образом, количество теплоты, которое выделяется в проводнике с током, пропорционально квадрату силы тока, времени его протекания и сопротивлению проводника. Выражение (2.18) есть закон Джоуля-Ленца для участка цепи постоянного тока. Он был установлен экспериментально Д. Джоулем (1841) и независимо от него Э.Х. Ленцем (1842).

Выделим в проводнике элементарный цилиндрический объем (ось цилиндра совпадает с направлением тока). Сопротивление этого элементарного объема Тогда по закону Джоуля-Ленца за время dt в этом объеме выделится теплота

Количество теплоты, выделяющееся за единицу времени в единице объема, называется удельной тепловой мощностью электрического тока:

Используя дифференциальную форму закона Ома (2.11) и соотношение , получим

(2.19)

Формула (2.19) является обобщенным выражением закона Джоуля-Ленца в дифференциальной форме, пригодным для любого проводника.

II.5. Закон Ома в интегральной форме

Для однородного участка цепи, то есть для участка, на котором не действуют сторонние силы, закон Ома записывается в форме (2.8). Рассмотрим теперь неоднородный участок цепи 1-2 (рис. 2.8), где действует ЭДС источника и на концах которого приложена разность потенциалов .

На рассматриваемом участке работа всех приложенных сил (сторонних и электростатических), совершаемая над носителями тока, согласно (2.6) равна:

В этой формуле ЭДС берется либо с положительным, либо с отрицательным знаком. Если ЭДС способствует движению положительных зарядов в направлении обхода (в направлении 1-2), то есть внутри источника обход совпадает с перемещением зарядов от катода к аноду, то (рис. 2.8, а). Если ЭДС препятствует движению положительных зарядов в направлении обхода, то (рис. 2.8, б).

По закону сохранения и превращения энергии работа равна теплоте, выделяющейся на участке 1-2 за время t (эта теплота определяется согласно закону Джоуля-Ленца):

(2.20)

Приравнивая (2.6) и (2.20), получим

(2.21)

или

(2.22)

где R – суммарное сопротивление, включающее в себя внутреннее сопротивление r источника тока и сопротивление внешней цепи.

Выражение (2.21) или (2.22) есть закон Ома в интегральной (обобщенной) форме для цепи постоянного тока.

Действительно, если на данном участке цепи источник тока отсутствует ( ), то из (2.22) приходим к закону Ома для однородного участка цепи:

Если электрическая цепь замкнута (точки 1 и 2 совпадают), то . Тогда из (2.22) получаем закон Ома для замкнутой цепи:

Наконец, если цепь разомкнута, то и из (2.22) получаем, что , следовательно, для экспериментального определения ЭДС источника тока необходимо измерить разность потенциалов на его зажимах при разомкнутой нагрузке (режим холостого хода цепи).

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]