Добавил:
kiopkiopkiop18@yandex.ru Вовсе не секретарь, но почту проверяю Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
5 курс / Пульмонология и фтизиатрия / Мониторинг_дыхания_пульсоксиметрия,_капнография,_оксиметрия,_Шурыгин.doc
Скачиваний:
0
Добавлен:
24.03.2024
Размер:
1.84 Mб
Скачать

Быстрая оксиметрия

Этот метод, называемый также оксиметрией дыхательных циклов (breath-by-breath oximetry), за минувшие полтора десятилетия внедряется так активно, что, по-видимому, вскоре станет главенствующим методом мониторинга концентрации кислорода в операционных и палатах интенсивной терапии. Быстродействующие оксиметры не только выполняют все функции своих "заторможенных" собратьев, но и предоставляют в распоряжение врача массу дополнительной полезной информации. Они обнаруживают некоторые расстройства газообмена в десятки раз быстрее, чем пульсоксиметры и капнографы. Вместе с тем, поскольку к быстрой оксиметрии стали прибегать лишь недавно — благодаря появлению парамагнитных сенсоров,— основные подходы к углубленной клинической интерпретации данных мониторинга еще только формируются. Если библиография по капнометрии исчисляется тысячами публикаций (статьи, главы в руководствах, отдельные монографии и атласы), то по вопросам быстрой оксиметрии таковых не наберется и нескольких десятков.

В наши дни в анестезиологии и интенсивной терапии используются оксиметры, конструктивно выполненные как:

• масс-спектрометры;

• рамановские анализаторы;

• парамагнитные анализаторы.

Mace-спектрометрия как метод мультигазового мониторинга подробно рассмотрена в главе "Капнография", и все сказанное там целиком относится и к мониторингу кислорода. Масс-спектрограф сегодня — это прибор для научно-исследовательских лабораторий, и такое положение дел вряд ли изменится, хотя недавно рынок мониторов пополнился прикроватными масс-спектрографами. Тем не менее именно в эпоху масс-спектрометрии закладывались основы газового мониторинга и совершенствовались принципы клинической интерпретации получаемых данных. Тем самым готовилась почва для широкого применения в дальнейшем дешевых, надежных и компактных газоанализаторов, функционирующих на иных принципах1.

1К сожалению, сказанное ни в коей мере не относится к отечественной медицине. Частично преодолев проблему дефицита аппаратуры, она оказалась перед другой, более сложной проблемой — неготовностью врачей к полноценному восприятию информации, поставляемой мониторами. Достаточно сказать, что во многих медицинских учреждениях даже при наличии средств не приобретаются капнографы и оксиметры, так как (читается, что они предназначены исключительно для научных исследований.

Рамановские анализаторы также описаны в главе "Капнография". Пока этот принцип применяется в единичных моделях мониторов. Возможно, его роль повысится, когда изобретут более надежные и долговечные источники лазерного излучения, чем те, что имеются сейчас.

Парамагнитные анализаторы кислорода на сей день преобладают на рынке быстродействующих оксиметров. Попытки использования сильных парамагнитных свойств кислорода для измерения его концентрации предпринимались еще в 60-70-е годы, но массовое производство быстрых оксиметров началось с 1985 года, когда фирма DATEX, преодолев многие сложные технические проблемы, выпустила в свет первый компактный, точный, не имеющий движущихся частей и не нуждающийся в техническом обслуживании парамагнитный кислородный сенсор. Собственная модификация этого принципа вскоре была реализована фирмой BRUEL & KJ AER под названием "магнито-акустический анализ" (мультигазовый монитор TYPE 1304). В настоящее время быстрые оксиметры производятся целым рядом фирм исключительно как компоненты мультигазовых мониторов, в которых анализ концентрации кислорода является завершающим этапом процесса.

Парамагнитные оксиметры долговечны, надежны; в них нет дорогостоящих деталей, подлежащих частой замене. Поэтому высокие стартовые затраты на их приобретение полностью оправдываются за несколько лет эксплуатации.

Принцип измерения концентрации кислорода основан на его сильных парамагнитных свойствах, обусловленных наличием в молекуле двух неспаренных электронов, благодаря чему молекулы кислорода обладают собственным магнитным полем и могут втягиваться во внешнее магнитное поле. По выраженности парамагнитных свойств кислород отличается от остальных газов приблизительно в 200 раз, что значительно облегчает его определение в газовых смесях.

В первом парамагнитном кислородном сенсоре, созданном Лайнусом Полингом (США, 1946 год), использовался статический принцип измерения, который повлек за собой массу проблем технического характера. Попытки внедрения сенсора в медицине успехом не увенчались.

В 1968 году был предложен более удачный, динамический принцип измерения, где кислород подвергается воздействию переменного магнитного поля и возникающие при этом скачки давления улавливаются микрофоном. Отсюда — второе название метода: магнитоакустический анализ.

Все быстрые оксиметры работают по принципу непрерывного отбора пробы газа (sidestream analysis). В мультигазовых мониторах в оксиметрический блок поступает проба газа, уже прошедшая через капнограф и анализатор летучих анестетиков, поэтому в измерительное устройство попадает обезвоженный газ, концентрация кислорода в котором может быть несколько выше, чем в контуре или в легких1. Для определения концентрации кислорода требуется не только исследуемый газ, но и эталонный, в данном случае — атмосферный воздух.

1Эта проблема рассматривается ниже, при обсуждении вопроса о практическом применении оксиметрии.

Устройство парамагнитного динамического сенсора показано на рис. 3.1. По двум отдельным каналам в анализатор попадают исследуемый и эталонный газы. Между каналами установлен электретный микрофон, измеряющий разность давления и служащий, таким образом, дифференциальным манометром. Такая разность появляется в моменты включения мощного электромагнита, между полюсами которого происходит смешивание газов. Микрофон, улавливающий изменения давления, преобразует акустический сигнал в электрический. Величина сигнала пропорциональна разнице концентраций кислорода в эталонном и анализируемом газах. Частота электрических импульсов, подаваемых на катушку электромагнита, составляет около 100 Гц, что позволяет контролировать любые изменения концентрации кислорода в мельчайших подробностях. Время реакции системы (Т0.90)1 при скорости откачки пробы 100 мл/мин — 130-150 мс. Этого более чем достаточно для достоверного отображения на дисплее оксиметрической кривой (оксиграммы).

1Скорость реакции монитора определяется промежутком времени от изменения концентрации газа до того момента, когда показания сенсора достигнут 90% от истинной величины.

1

Рис. 3.1. Схема устройства парамагнитного сенсора

После завершения анализа газовая смесь обычно сбрасывается в атмосферу. В отдельных случаях (неонатология, малопоточная анестезия) отработанный газ подлежит возврату в контур респиратора, что иногда создает некоторые проблемы. Например, при анестезии по закрытому контуру атмосферный газ разбавляет газонаркотическую смесь азотом, в результате чего не исключено снижение инспираторной концентрации кислорода.

При всей простоте идеи, от изобретения принципа измерения до выпуска первого серийного монитора прошло более пятнадцати лет, на протяжении которых разные фирмы старались решать многочисленные технические проблемы, стоявшие на пути к успеху. Первые парамагнитные анализаторы были громоздкими, чрезвычайно чувствительными к внешнему шуму, вибрации, колебаниям температуры, влажности и атмосферного давления. Справиться со всеми вышеуказанными проблемами удалось подразделению DATEX концерна INSTRUMENTARIUM (Финляндия) в начале 80-х годов. Использование системы обезвоживания газа позволило избежать нарушения свойств электретной мембраны микрофона и конденсации воды внутри сенсора; специальная оболочка из вспененной резины эффективно боролась с шумом и вибрацией. Были также разработаны действенные алгоритмы коррекции температурных и прочих отклонений. В итоге сенсорный блок размером 130 х 65 х 75 мм и весом 800 г стал компонентом различных моделей многофункциональных мониторов; он и по сей день принадлежит, видимо, к самым удачным в своем роде. Хорошую репутацию имеют также магнитоакустические сенсоры фирмы BRUEL & KJAER, которыми оснащены, мониторы нескольких других известных фирм.

Таким образом, в области быстрой оксиметрии завершился переход от сложных и дорогих масс-спектрографов к более простой, надежной и дешевой системе мониторинга, что способствовало оперативному и широкому распространению метода.

Соседние файлы в папке Пульмонология и фтизиатрия