Добавил:
kiopkiopkiop18@yandex.ru Вовсе не секретарь, но почту проверяю Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Скачиваний:
3
Добавлен:
24.03.2024
Размер:
3.09 Mб
Скачать

Мощность — это прекрасно, но ее избыток на единицу массы, согласно модели Веста, всегда приводит к росту потерь. Нам все еще есть чему научиться у природы.

Обратите внимание: энергетические возможности организма в модели Клайбера–Веста не зависят от того, живет он в Африке или плавает подо льдами, ест планктон или гоняется за антилопами. Универсальные законы тем и хороши, что сложные явления описываются одинаковыми закономерностями независимо от временных масштабов и тонких деталей внутреннего устройства. В конце статьи Джеффри Вест отмечает, что аллометрический закон Клайбера является, возможно, самой универсальной закономерностью, работающей «под капотом» у эволюции и незримо подпитывающей все то колоссальное биологическое разнообразие, которое мы видим за окном.

Блеск и нищета теорий ограниченного ресурса

Вернемся, однако, к проблемам старения. Теперь мы с вами знаем, сколько энергии в единицу времени доступно любому животному в зависимости от размера. Разобравшись с разделом «Доходы» в энергетическом балансе, давайте обсудим расходную часть. Следуя идеям Джеффри Веста, попробуем понять, как устроены законы развития и роста сложных систем, компаний или живых организмов. Оказывается, и тут все подчинено универсальным закономерностям!

На что же мы тратим свою энергию? Может показаться, что в первую очередь речь идет про утренние пробежки, работу (это то, чем мы сейчас заменили охоту или поиск еды) или поиск полового партнера. На самом деле все это вместе составляет малую часть энергетического баланса. Основные траты связаны с собственно нормальным существованием: необходимо поддерживать кровоток и дыхание, синтез нужного, деградацию и вывод ненужного, теплообмен

— все то, что каждую минуту помогает избежать тепловой смерти. Еще одной важнейшей функцией организма и важнейшей

расходной частью энергетического баланса является поддержание целостности организма. Это энергия, которая тратится на исправление всевозможных регуляторных ошибок — не вовремя отданных или

https://t.me/medicina_free

неадекватно услышанных команд и физических повреждений, скорость появления которых пропорциональна массе или размеру животного.

Процессы роста и поддержания работоспособности уже выросшего организма конкурируют за использование всей доступной вырабатываемой энергии. В начале жизни размер тела невелик относительно растущих возможностей по генерации энергии и избыток может быть использован для роста организма. В результате животное быстро увеличивается в размере.

С возрастом скорость роста метаболизма на единицу массы замедляется в силу того самого закона Клайбера–Веста, а расходы на поддержку и «ремонт» единицы массы организма остаются на определенном постоянном уровне. В результате избыток энергии, которую можно было бы потратить на рост, постепенно сходит на нет, и рост организма прекращается. В конечном итоге организм достигает своего взрослого размера, и размер животного начинает лишь случайно отклоняться от нормы в результате перерывов в питании или повреждений.

Характер функциональной зависимости массы от возраста оказывается универсальным для животных самого разного размера. В

1999 году в замечательной статье в журнале Nature27 Джеффри Вест и его коллеги показали, что универсальные законы роста позволяют описать одним и тем же уравнением зависимость роста от массы для креветок, окуня, курицы или коровы. Чаще, впрочем, самым интересным в статье оказывается не то, что в ней написано, а то, что должно было бы быть, но отсутствует. В публикации нет данных про человека, и мы скоро поймем почему.

Время, необходимое животному для набора взрослой массы, растет по мере увеличения размера животного пропорционально массе в степени ¼. Вот как аллометрический закон Клайбера порождает все остальные аллометрические законы: чтобы возраст зрелости увеличился в 10 раз, масса организма должна вырасти в 10 000 раз (!).

Очень советую прочитать историю об универсальных законах роста и устройства живых организмов и общественных структур из

первых уст в книге Джеффри Веста «Масштаб»28.

Для нашего рассказа важно другое. Продолжительность жизни большинства животных растет по мере увеличения размера организма,

https://t.me/medicina_free

причем время жизни пропорционально массе в той же самой степени ¼, что и в модели роста! Вест обращает внимание на это «совпадение» и предлагает считать, что не только время взросления, но и продолжительность жизни животных подчиняется тому же закону. Предполагается, что теперь у нас в руках хорошая теория продолжительности жизни.

Предложенное объяснение позволяет заново переосмыслить многие факты, связанные со старением человека и животных. Так, например, увеличение скорости метаболизма, согласно теории, должно приводить к сокращению продолжительности жизни. Скорость химических реакций очень сильно зависит от температуры и снижается на холоде. Вот почему холоднокровные животные так чувствительны к условиям внешней среды. Жизнь круглых червей в лабораторных условиях удлиняется аж на 10 дней (30 дней против 20), если понизить температуру с 20 до 15 °C. И наоборот, жизнь червей сокращается примерно с 20 до 10 дней в среднем при увеличении температуры на те же 5 °C — с 20 до 25 °C.

Так же логично, с точки зрения теории Веста, что увеличение стрессовой нагрузки отбирает ресурсы от роста в пользу регенерации, а потому неизбежно замедляет развитие. Можно, например, было бы ожидать, что стимуляция организма небольшим стрессом (диеты, контрастный душ или сауна) может увеличить продолжительность жизни. И наверняка любое такое воздействие должно иметь больший эффект в молодости, пока скорость роста велика, и скорее ничтожный в конце жизни организма. Все эти явления хорошо известны в биологии старения, и в последующих разделах мы увидим, как природа использует каждый из этих рецептов в очередной новой попытке создать долгоживущий организм.

Для человека теория Веста определяет возраст зрелости в 35 лет, что очень близко к средней продолжительности жизни за последние тысячи лет или характерному времени обновления популяции в теории Капицы. Перемножая время взросления на частоту сердечных сокращений в модели Веста, мы получаем константу. Теперь мы понимаем, что у млекопитающих это 1 млрд сердечных сокращений от первого вздоха до зрелости, но совсем не обязательно до смерти.

Не надо недооценивать наших предков: «смешные» по современным меркам аргументы о конечном числе вздохов и

https://t.me/medicina_free

сердечных сокращений в течение жизни оказались совершенно верным эмпирическим наблюдениям. Или почти верным — не надо забывать, что наши предки жили во времена, когда смерть наступала зачастую даже раньше, чем зрелость и отличить старость от зрелости было крайне трудно!

Теория индивидуального развития (или, выражаясь языком биологии, онтогенеза) Веста позволяет поспекулировать, каким образом такая важнейшая величина, как скорость роста или время развития, может быть «закодирована» в геноме. Оказывается, нет необходимости создавать «часы смерти» — одну специальную систему из нескольких генов, непосредственно регулирующих старение или ожидаемую продолжительность жизни. Вместо этого подойдет любой ген, который влияет на настройки систем метаболизма, или любой другой ген, регулирующий работу любого компонента систем регенерации. Таких генов должно быть очень и очень много, и каждый из них в той или иной степени влияет еще и на развитие и старение организма как целого.

Вот, например, почему рост человека определяется не одним геном, а генетическими вариациями сотен из них. В последние годы удалось построить расчетные модели роста человека на основании генотипа, способные предсказать рост с точностью до 2 см. Мы вернемся к этому вопросу чуть позже, а пока заметим, что рост оказывается практически полностью генетически предопределенным, но нет особого гена, отвечающего за рост.

В следующей главе мы ответим на вопрос, почему и при каких условиях возраст зрелости и продолжительность жизни оказываются связаны между собой. Отметим еще раз, что фактически удвоение продолжительности жизни человека в последние 100 лет заставляет думать, что прямой связи между временем развития организма и продолжительностью жизни может и не быть. Зато подробное изучение таких исключительных ситуаций — животных с необычно большой продолжительностью жизни для своего размера — привело, пожалуй, к самому большому открытию в науках о старении в XXI веке, а именно к демонстрации существования пренебрежимого старения у млекопитающих.

https://t.me/medicina_free