Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Agadzhanyan_Tel_Tsirkin_Chesnokova_FIZIOLOGIYa_...doc
Скачиваний:
67
Добавлен:
10.11.2019
Размер:
9.6 Mб
Скачать

19. Физиология человека

289

пенсация в кислороде происходит с помощью миоглобина. В диастолу запасы восстанавли­ваются. Таким образом, миоглобин «спасает» сердечную мышцу от гипоксии. Как извест­но, сердце в основном способно черпать энергию только из реакций, происходящих в аэ­робных условиях.

В скелетных мышцах миоглобин тоже используется как резерв. В начальные периоды физической активности, когда еще рабочая гиперемия не реализована, миоглобин отдает имеющийся у него запас кислорода.

ТРАНСПОРТ УГЛЕКИСЛОГО ГАЗА

Углекислый газ является «шлаком», подлежащим удалению, но этот «шлак» используется вторично, для пользы организма — участвует в регуляции кислотно-щелочного равновесия.

В крови углекислый газ находится в трех фракциях: физически растворенный, химичес­ки связанный в виде бикарбонатов и химически связанный с гемоглобином в виде карбге-моглобина. В венозной крови всего содержится 580 мл углекислого газа в 1 л крови. При этом на долю физически растворенного газа приходится 25 мл, на долю карбгемоглобина — примерно 45 мл, на долю бикарбонатов — 510 мл, причем — на долю бикарбонатов плазмы — около 340 мл (это соответствует 24 ммоль бикарбонатов), а на долю бикарбона­тов эритроцитов — около 170 мл. В артериальной крови содержание угольной кислоты меньше. В «Физиологии человека» (под ред. Р. Шмидта и Г. Тевса, 1996) приводятся такие данные о содержании различных фракций (в ммоль/л):

Таблица 10.

Фракция СО,

Артериальная кровь

Венозная кровь

Разница

Бикарбонаты

плазмы

13,2

14,1

+0,9 ммоль/л

Бикарбонаты

эритроцитов

6,4

7.1

+0,7 ммоль/л

Карбгемоглобин

1,1

1.3 ..

+0,2 ммоль/л

Растворенный СО2

1,2 ->

1,4

+0,2 ммоль/л

Естественно, что физически растворенный углекислый газ делает «всю погоду» — от его количества, а точнее, от его парциального напряжения зависит процесс связывания уг­лекислого газа кровью.

Когда кровь тканевого капилляра соприкасается с тканью, в которой парциальное на­пряжение газа составляет 60 мм рт, ст. и выше (а артериальная 40 мм рт. ст.), то в результа­те такого градиента углекислый газ устремляется в кровь, растворяясь в плазме. При повы­шении парциального напряжения в крови СО2 начинает соединяться с водой, образуя Н2СО3. Однако в плазме эта реакция идет очень медленно. Мембрана эритроцита хорошо проница­ема для углекислого газа, поэтому СО2 поступает в эритроцит. Здесь имеется фермент кар-боангидраза, который при высоком парциальном напряжении углекислого газа в 10000 раз увеличивает скорость образования угольной кислоты (когда парциальное напряжение уг­лекислого газа будет снижаться, как в капиллярах легких — этот же самый фермент, наобо­рот, катализирует противоположную реакцию — разложение угольной кислоты на воду и углекислый газ, чем способствует отдаче углекислого газа). Итак, в эритроцитах с боль­шой скоростью образуется угольная кислота. Она диссоциирует на Н+ и НСО3.

Основная масса свободных ионов водорода связывается дезоксигемоглобином, т. е. тем самым гемоглобином, который в капиллярах ткани освободился от кислорода. Дезоксиге-моглобин является более слабой кислотой, чем угольная, а тем более — чем оксигемогло-бин, и поэтому достаточно прочно связывает ионы водорода, не давая возможности закис-

290

ляться среде. Одновременно дезоксигемоглобин теряет сродство к ионам калия, поэтому эти ионы освобождаются и идут на образование КНСО3.

Учитывая, что в эритроците образуется большое количество анионов НСО3, часть этих анионов выходит из эритроцитов в плазму, где связывается с ионами натрия, образуя би­карбонат натрия. В обмен на вышедшие анионы НСО3~ внутрь эритроцитов входят анионы хлора. Это явление получило название хлоридного сдвига или сдвига Хамбургера. Кроме того, в эритроциты, богатые СО2, входят и молекулы воды (чтобы образовать Н2СО3). По* этому эритроциты, прошедшие ткань, содержат больше воды, чем эритроциты легочных капилляров.

Итак, пройдя через эритроцит, угольная кислота в конечном итоге превращается в би­карбонат плазмы (2/3) и бикарбонат эритроцитов (1/3) и в таком виде переносится к лег­ким. Одновременно в эритроците небольшая часть СО2 образует карбаминовую связь с ге­моглобином, в результате около 10% молекул СО2 переносятся внутри эритроцитов в виде карбгемоглобина. Из данных, приведенных в таблице, видно, что в артериальной крови тоже содержится определенная доля карбгемоглобина. Т. е., пройдя легочный капилляр, кровь не отдает полностью карбгемоглобин. В целом, в капиллярах легких при низком парциаль­ном давлении и напряжении углекислого газа происходит процесс, направленный на выде­ление «захваченного» в тканях углекислого газа. Он вдет по обратному пути. В его основе лежит уменьшение доли физически растворенной фракции углекислого газа.

Связывание углекислого газа зависит от напряжения этого газа в крови. Чем больше парциальное напряжение, тем выше степень связывания кровью углекислого газа. Эта за­висимость имеет нелинейный характер: Обнаружено важное явление — эффект Христиан-сена-Дугласа-Холдена, или эффект Холдена — химическое связывание углекислого газа зависит от состояния гемоглобина: если в крови много оксигемоглобина, то связывание углекислого газа снижено, и, наоборот, чем меньше оксигемоглобина, тем выше связыва­ние СО]. Дезоксигемоглобин хорошо связывает ионы Н+. Это создает условие для допол­нительного образования НСО3~. Все это способствует тому, что кровь, проходящая через тканевые капилляры, лучше отдает кислород и лучше принимает от клеток углекислый газ.

Дыхание и угольная кислота сами по себе играют важную роль в поддержании кислот­но-щелочного равновесия крови. Среди буферных систем крови особое место благодаря высокой лабильности занимает бикарбонатная буферная система (H2CO3/NaHCO3). На долю бикарбоната натрия как компонента буферных оснований приходится в среднем около 24 ммоль/л, а всего буферных оснований (+ белковый буфер) — 41—48 ммоль/л. Когда в крови появляется избыток водородных ионов, то количество бикарбоната натрия снижа­ется, но при этом возрастает концентрация угольной кислоты. В результате дыхание меня­ется — происходит углубление и учащение дыхания, это вызывает повышенное удаление угольной кислоты и ликвидацию гиперкапнии; кислотно-щелочное равновесие при этом остается на прежнем уровне —рН артериальной крови, в среднем сохраняется равным 7,4. При увеличении в крови концентрации ОН~ наоборот, увеличивается содержание бикарбоната натрия, это вызывает снижение концентрации угольной кислоты, что приводит к уменьшению глубины и частоты дыхания, к задержке угольной кислоты и поэтому гипокапния ликвидирует­ся, а парциальное напряжение углекислого газа в крови возвращается к 40 мм рт. ст.

Для оценки состояния кислотно-щелочного равновесия по способу Аструпа (примене­ние аппарата типа «Микроаструп») обычно производят замер рН исследуемой крови при двух вариантах ее насыщения углекислым газом (рСО2=58 мм рт. ст. и 28 мм рт. ст.), а затем определяют истинное напряжение углекислого газа при реальном значении рН крови (например, рН=7,35, это соответствует рСО2 у данного больного, равное 40 мм рт. ст.). Кроме того, метод Аструпа позволяет по диаграмме определить реальное значение буфер­ных оснований (ВВ), т. е. суммы белкового буфера и бикарбонатов, концентрацию стан­дартных бикарбонатов (бикарбоната натрия), а также отклонение значений ВВ от нормы, т. е. определить, имеется дефицит буферных оснований (BD) или избыток оснований (BE). Если в крови при рН, равном например, 7,35 — напряжение углекислого газа равно 40 мм

291

рт. ст., и одновременно выявляется дефицит оснований, то это указывает на то, что имеет место так называемый метаболический ацидоз — накопление кислых, продуктов, идущих из тканей. Если при данном значении рН (например, 7,35) увеличено парциальное напряже­ние углекислого газа (например, до 49 мм рт. ст.), а ВЕК), то это свидетельствует о наличии газового ацидоза, который возникает из-за недостаточности процесса газообмена. Таким образом, оценка кислотно-щелочного состояния по способу Аструпа позволяет, во-первых, оценить это состояние, а во-вторых, в случае его нарушения, указать причины, вызываю­щие дисбаланс.

ОКСИГЕМОМЕТРИЯ И ОКСИГЕМОГРАФИЯ

Эти методы используются в физиологических исследованиях (реже — в клинической практике) с целью неинвазивного определения содержания в крови оксигемоглобина, в % к имеющемуся гемоглобину. Методы основаны на том, что поглощение света зависит от фор­мы гемоглобина: оксигемоглобин поглощает меньше света, чем дезоксигемоглобин. На ушную раковину испытуемого помещают фотодатчик с источником света. Луч,,проходя через достаточно прозрачную поверхность ушной раковины, поглощается фотодатчиком. Когда в крови снижается уровень оксигемоглобина, например, при произвольной задержке дыхания, — возрастает поглощение света, и датчик регистрирует это изменение либо на стрелочном приборе (оксигемометрия), либо на самописце (оксигемография). Этот способ позволяет определить величину падения парциального напряжения кислорода в крови при произвольном апноэ, а также оценить скорость движения крови на участке «легкое — ухо». Когда испытуемый после длительного апноэ делает вдох, он получает порцию кислорода, и кровь, обогащенная кислородом, от легких достигнет ушной раковины, на которой нахо­дится фотодатчик. Время от момента вдоха до сдвига кривой на оксигемографе или оксиге-мометре отражает время движения крови на участке «легкое — ухо».

МЕТОДЫ ОЦЕНКИ ГАЗООБМЕНА

Потребность в таких определениях возникает, главным образом, при оценке максималь­ного потребления кислорода, при изучении энергозатрат организма в каких-либо условиях, а также для исследования дыхательной функции легких. Существуют различные способы определения потребления кислорода и выделения углекислого газа. Они заключаются в том, что на определенном интервале времени регистрируют потребление кислорода и выделе­ние углекислого газа (современные приборы типа «Спиролит») или только кислорода (при­бор типа «Метатест»). В этих случаях оценка потребления кислорода, например, прово­дится по убыли объема воздуха, из которого испытуемый совершает вдох и куда он делает выдох.

Классический способ определения потребления кислорода и выделения углекислого газа заключается в следующем. Определяют минутный объем дыхания, например, собирают весь выдохнутый воздух в мешок Дугласа. Затем проводят газовый анализ — определяют про­центное содержание кислорода и углекислого газа (как и в атмосферном воздухе), и по разнице процентного содержания кислорода и углекислого газа во вдыхаемом и выдыхае­мом воздухе определяют объемы кислорода и углекислого газа. Например, МОД=8 л/мин. Содержание кислорода в атмосфере 21%, в выдыхаемом воздухе — 16%. Следовательно, разница — 21—16%=5% от 8 л, т. е. (5x8)/lQO=O,4 л/минуту.

ГОРНАЯ БОЛЕЗНЬ

При подъеме на гору (более 4,5 км) возникает горная болезнь как результат низкого парциального давления кислорода. Если человек быстро поднимается на высоту, то разви­вается острая гипоксия. В основе явления лежит гипервентиляция, возникающая в ответ на

292

острую гипоксию (за счет возбуждения хеморецепторов каротидного синуса), но при этом наблюдается гипокапння, т. е. вымывание углекислого газа, и поэтому импульсация с цент­ральных хеморецепторов резко снижается, что приводит к гипопноэ. У горцев снижена чув­ствительность к гипоксии, их периферические хеморецепторы снижают свою чувствитель­ность к недостатку кислорода, т. е. наблюдается своеобразная гипоксическая «глухота». Поэтому у них МОД не возрастает, не создается снижение парциального напряжения угле­кислого газа. Есть, конечно, и другие механизмы, позволяющие горцам адаптироваться к таким условиям. Например, у них возрастает диффузионная способность легких, увеличи­вается кислородная емкость крови за счет роста содержания гемоглобина, повышается спо­собность тканей экстрагировать кислород.

При подъеме в горы из-за падения атмосферного давления снижается парциальное дав­ление кислорода в альвеолярном пространстве. Когда это давление снижается ниже 50 мм рт. ст. (5 км высоты), неадаптированному человеку необходимо дышать газовой смесью, в которой повышено содержание кислорода. На высоте 9 км парциальное давление в альвео­лярном воздухе падает до 30 мм рт. ст., и практически выдержать такое состояние невоз­можно. Поэтому используется вдыхание 100% кислорода. В этом случае при данном баро­метрическом давлении парциальное давление кислорода в альвеолярном воздухе составля­ет 140 мм рт. ст., что создает большие возможности для газообмена. На высоте 12 км при вдыхании обычного воздуха альвеолярное давление = 16 мм рт. ст. (смерть), при вдыха­нии чистого кислорода — всего лишь 60 мм рт. ст., т. е. дышать еще можно, но уже опасно. В этом случае можно подавать чистый кислород под давлением и обеспечить дыхание при подьеме на высоту 18 км. Дальнейший подъем возможен только в скафан­драх (при использовании автономного атмосферного давления).

ДЫХАНИЕ ПОД ВОДОЙ

При опускании под воду растет атмосферное давление. Например, на глубине 10 м дав­ление равно 2 атмосферам, на глубине 20 м — 3 атмосферам, и т. д. В этом случае парци­альное давление газов в альвеолярном воздухе соответственно возрастает в 2 и 3 раза и т. д. Это грозит высоким растворением кислорода. Но избыток кислорода не менее вреден для организма, чем его недостаток. Поэтому один из путей уменьшения этой опасности — ис­пользование газовой смеси, в которой процентное содержание кислорода уменьшено. На­пример, на глубине 40 м дают смесь, содержащую 5% кислорода, на глубине 100 м — 2%.

Вторая проблема — влияние азота. Когда парциальное давление азота возрастает, то это приводит к повышенному растворению азота в крови и вызывает наркотическое состоя­ние — глубинное опьянение. Поэтому, начиная с 60 м азотно-кислородная смесь заменяет­ся гелио-кислородной смесью. Гелий менее токсичен. Он начинает оказывать наркотичес­кий эффект лишь на глубине 200—300 м. В настоящее время гелио-кислородная смесь поз­воляет водолазу работать на глубинах до 700 м. Сейчас проводятся исследования по ис­пользованию водородно-кислородных смесей для работы на глубинах до 2 км, так как водо­род — очень легкий газ. Это облегчает работу дыхательной мускулатуры — обычно на глубинах возрастает плотность газа и поэтому возрастает неэластическое (аэродинамичес­кое) сопротивление дыханию.

Третья проблема для водолазных работ — это декомпрессия. Если быстро поднимать водолаза с глубины, то растворенные в крови газы вскипают и вызывают газовую эмболию — закупорку сосудов. Поэтому требуется постепенная декомпрессия. Например, подъем с глубины 300 м требует 2-недельной декомпрессии. В связи с этим в последние годы все чаше применяют так называемый вахтовый метод: водолаз живет и работает на глубине в течение 2—3 недель в барокамере под водой. В этом случае ему не надо привыкать к ново­му давлению, когда он выходит из барокамеры в воду. Затем его подвергают постепенной декомпрессии, а его место занимает другой водолаз (если есть необходимость в дальней­шем проведении таких работ).

293

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]