Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Мерзликин Г.Я. - Основы теории ядерных реакторо...doc
Скачиваний:
77
Добавлен:
24.08.2019
Размер:
4.79 Mб
Скачать

9.2. Эффективная добавка (э)

Итак, окружение активной зоны реактора бесконечно-толстым слоем хорошего замедлителя, называемого отражателем, даёт возможность уменьшить критические размеры активной зоны и, тем самым, добиться экономии ядерного топлива и конструкционных материалов.

Поэтому вопрос: намного ли отражатель уменьшает критические размеры активной зоны? - представляет самый практический интерес.

9.2.1. Определение:

Разница критических полуразмеров активной зоны, получаемая за счёт применения отражателя называется эффективной добавкой и обозначается э.

Если диаметр активной зоны Dаз является её полным поперечным размером, то радиус активной зоны Rаз является её поперечным полуразмером.

Поэтому на основании данного определения величина эффективной добавки:

э = R' - Rаз (9.2.1)

Здесь R' и Rаз, см - критические радиусы активной зоны без отражателя (в вакууме) и при применении отражателя соответственно.

Или через вертикальные критические размеры - высоты критической активной зоны без отражателя (Н') и с отражателем (Наз):

э = Н'/2 - Наз/2 (9.2.2)

Таким образом, найдя величину э, можно ответить на вопрос о выигрыше в компактности активной зоны, получаемом за счёт применения отражателя.

9.2.2. Зависимость величины э от толщины отражателя. Отражатели в ядерных реакторах конструируются, как правило, из того же материала, который служит в качестве основного замедлителя в их активных зонах.

До сих пор речь шла о гипотетическом отражателе бесконечной толщины. Но, разумеется, никому не придёт в голову оснащать активную зону реактора отражателем, скажем, двухметровой толщины ради сокращения её размеров на 5 -10 см. Здравомыслящий человек постарается вначале выяснить, как зависит э от толщины отражателя, а затем уже станет думать, стоит ли овчинка выделки.

Особенно важен ответ на вопрос об эффективной толщине отражателя для транспортных реакторов, где выигрыш в размере активной зоны на 20 см оборачивается уменьшением веса всей установки на десятки тонн.

То, что эффективность действия отражателя (которая оценивается величиной э) зависит от толщины отражателя (По), очевидно. В самом деле, если активная зона лишена отражателя (По = 0), то э = 0; если же активная зона окружена отражателем бесконечной толщины, то нужно ожидать, что при отражателе такой толщины значение эффективной добавки будет иметь наибольшую величину (эmax); при промежуточных значениях По должна существовать какая-то зависимость эффективной добавки от толщины отражателя из данного материала - э = f о).

Предположим, имеются две критические активные зоны одинакового состава - без отражателя и с отражателем конечной толщины По.

В обоих случаях для среды активной зоны, а во втором случае - и для среды отражателя, можно записать волновое уравнение Гельмгольца, для которого по конкретным (критическим) размерам и диффузионным характеристикам сред можно составить граничные условия, затем решить эти уравнения, найти в обоих случаях величины геометрического параметра активных зон и критические размеры их без отражателя и с отражателем. Разница критических полуразмеров первой и второй активных зон и даст величину эффективной добавки эо1) при конкретной толщине отражателя По1.

С некоторыми допущениями эта задача решается не только в численном, но и в общем аналитическом виде, давая возможность получить следующее выражение:

(9.2.3)

где: trаз и tro, см-1 - величины транспортных макросечений сред активной зоны и отражателя соответственно;

Lo, см - длина диффузии в отражателе.

Прежде всего отметим, что величина эффективной добавки пропорциональна величине гиперболического тангенса от относительной (т.е. выраженной в длинах диффузии Lo) толщины отражателя.

Напомним, что собой представляет функция гиперболического тангенса. Самое простое её выражение - через экспоненциальные функции того же аргумента:

(9.2.4)

Наглядное представление об этой функции даёт её график:

1.0

thx

0.5

0 1 2 х

Рис.9.4. График функции гиперболического тангенса thx.

Как видим, гиперболический тангенс - функция монотонная и возрастающая; с ростом х она асимптотически устремляется к своему предельному значению - единице. Но заметим, что практически (с менее чем 4%-ной погрешностью) она приближается к своему пределу уже при х = 2 (th2  0.964).

Теперь о зависимости эо). Понятно, что если построить график э по оси абсцисс в единицах длины диффузии в отражателе (то есть в относительных единицах По/Lо), то этот график, по существу, повторит кривую гиперболического тангенса в ином масштабе по оси э. Асимптотическим пределом величины э при По/Lо   будет значение:

(9.2.5)

эо)

0 Lo 2Lо По

Рис.9.5.Зависимость эффективной добавки от толщины отражателя.

Вид этого графика свидетельствует о том, что величина эффективной добавки на 96.4% достигает своего предела уже при толщине отражателя:

По 2Lо.

Возникает практический вопрос: стоит ли увеличивать толщину отражателя более этого значения, зная при этом, что уменьшение критических размеров активной зоны на 1 см достанется ценой увеличения массы самого отражателя приблизительно на 650 кг и массы корпуса ВВЭР - на 1300 кг? – Наверное, не стоит.

Эффективной толщиной отражателя из заданного материала называется его толщина, при которой отражатель по своим свойствам практичес- ки идентичен бесконечно толстому отражателю из этого материала.

Найденная величина:

Пэф 2Lo (9.2.6)

и есть эффективная толщина отражателя в диффузионном приближении.

В диффузионно-возрастном приближении эффективная толщина отражателя считается равной полутора длинам миграции нейтронов в активной зоне:

(9.2.7)

Расчёты по обеим формулам дают приблизительно одинаковые результаты. Считая, что у разогретого ВВЭР длина диффузии в водном отражателе Lо  5.5 см, можно получить представление об эффективной толщине отражателя в реальных ВВЭР, равной приблизительно 10  11 см. Такие же расчёты для реактора с графитовым отражателем дают значение эффективной толщины отражателя приблизительно 0.94 м (в реакторе РБМК-1000 фактическая толщина отражателя – 1 м).

9.2.3. Физические основы конструкции отражателей в реальных ЭЯР. В соответствии с упомянутым правилом, основным материалом отражателя выбирается тот же материал, что служит в реакторе основным замедлителем.

Поэтому в уран-графитовом реакторе РБМК-1000 отражатель выполнен из графита, а в реакторе ВВЭР-1000 основной материал отражателя - вода.

Однако в обоих случаях дело обстоит немного сложнее. В ВВЭР, например, отражатель не чисто водяной, а слоистый, водно-стальной: кольцевые слои воды вокруг активной зоны чередуются с кольцевыми слоями нержавеющей стали. Нержавеющая сталь 08Х18Н10Т, применяемая как основной материал для внутриреакторных конструкций, имеет довольно неплохие замедляющие свойства:

- транспортное макросечение tr = 0.861 см-1 (у воды tr  2 см-1);

- стандартная длина диффузии L = 1.62 см (у воды L = 2.72 );

- замедляющая способность s = 0.018 -1 (у воды s = 1.35 -1).

Недостаток этой стали как материала для отражателя - её большое макросечение поглощения (a  0.24 -1), из-за чего эффективность водно-стального отражателя несколько снижается по сравнению с чисто водным.

Применение стальных слоев в экранной сборке ВВЭР - дань другой необходимости. Из активной зоны работающего ВВЭР идёт не только поток утечки нейтронов, но и мощное -излучение, для которого дециметровый слой воды не является достаточной преградой; попадая на корпус реактора, поток -квантов высоких энергий вызывает радиационный наклёп в его стали, отчего она теряет свои пластические свойства, охрупчивается. Поэтому постановка стальных экранов между активной зоной и корпусом реактора является вынужденной мерой, цель которой - снижение на два порядка величины потока гамма-излучения на корпус реактора, и повышение надежности и долговечности его работы.

Для водно-стальных отражателей эффективной толщины величина эффективной добавки с приличной точностью может вычисляться по эмпирической формуле:

э 3.2 + 0.1(Lаз2 + аз) (9.2.8)

Водно-стальную компоновку имеют и верхний и нижний торцевые отражатели в ВВЭР, с той лишь разницей, что в них нет явно выраженного чередования горизонтальных слоев воды и стали.

В реакторе РБМК-1000 и боковой, и торцевые отражатели в силу необходимости также имеют не чисто графитовую структуру: через нижний отражатель проходят подводящие теплоноситель к технологическим каналам трубы, в верхнем отражателе проходят отводящие трубы, а графит бокового отражателя пронизывают от низа до верха вертикальные трубы охлаждения самого отражателя.