Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
ОТВЕТЫ_Первые вопросы.doc
Скачиваний:
25
Добавлен:
13.04.2019
Размер:
391.68 Кб
Скачать

3. Рудницкая 3 класс, 2ч, с 54 – 55, № 205 – 207.

Билет №17

1. Алгоритм умножения многозначных чисел в десятичной системе счисления; теоретические факты, лежащие в основе. Примеры заданий из учебников математики для начальной школы, раскрывающих теоретические основы данных алгоритмов.

Кроме алгоритмов письменного сложения и вычитания, изучаемых в курсе математики в начальной школе, также изучается алгоритм письменного умножения многозначных чисел в десятичной системе счисления. Следует отметить, что алгоритм письменного умножения многозначных чисел подразделяется на следующие этапы:

1. умножение многозначного числа на однозначное

2. умножение многозначного числа на степень числа 10

3. сложение многозначных чисел

Отсюда сначала рассмотрим алгоритм письменного умножения многозначного числа на однозначное. В основе этого алгоритма лежат следующие положения:

- представление числа в десятичной системе счисления

- свойство действий умножения и деления

- табличное умножение однозначных чисел

Рассмотрим указанные теоретические положения на конкретном примере:

231* 3 (представление числа в десятичной системе счисления) ====

(2 * 102 + 3 * 101 + 1) * 3 (дистрибутивный закон умножения относительно сложения) === (2*102)*3 + (3*10)*3 + 1*3 (коммутативный и ассоциативный законы умножения) === (2*3)*102 + (3*3)*10 + 1*3 (табличное умножение однозначных чисел) === 6*102 + 9*10 + 3 (представление числа в десятичной системе счисления) === 693.

Для того, чтобы упростить указанную запись, которая представляет собой алгоритм письменного умножения многозначного числа на однозначное, предлагается представить эту запись в следующем виде, называя его письменным умножением многозначного числа на однозначное в столбик

Алгоритм письменного умножения многозначного числа на

однозначное:

1. второй множитель записываем под первым

2. умножение начинаем с разряда единиц: число единиц разряда единиц первого множителя умножаем на второй множитель.

Если полученный результат < 10, записываем его в разряд единиц произведения.

Если полученный результат >= 10, то представляем его в виде 10 * q + c, где с – однозначное число. С записываем в разряд единиц произведения, а q запоминаем.

3. переходим к умножению в следующем разряде; если необходимо полученный результат увеличиваем на q и повторяем один из записанных процессов.

4. умножение считаем законченным, если умножили на однозначное число единицы старшего разряда первого множителя.

Умножение числа на степень числа 10, как известно, сводится к тому, что к десятичной записи числа приписывается справа столько нулей, сколько указано показателей степени числа 10.

Если мы будем рассматривать умножение числа на число у*10k, где у – однозначное число (300 = 3*102), то сначала многозначное число умножается на однозначное у, а затем справа к полученному произведению приписывается столько нулей, сколько соответствует показателю k.

Разберем на конкретном примере умножение в столбик трехзначного числа на двузначное:

Сначала умножаем число 231 на 2 и получаем 462. Далее мы

умножаем 231 на 30. Для этого 231 мы сначала умножаем на 3, а

затем к полученному числу прибавляем справа 0. Полученное

произведение записываем под первым произведением, смещая его на один разряд влево. Это смещение подразумевает факт умножения числа на степень числа 10. Полученные числа 462 и 693 называют неполными произведениями. Потом эти числа складываются по правилу сложения многозначных чисел в столбик, и получается ответ. *Во втором неполном произведении можно было записать цифру 0, но т.к. при прибавлении 0 к любому числу значение числа не меняется, то принято этот 0 не писать, но если учитель чувствует, что эта подсказка имеет значение, то можно его записать.

При письменных вычислительных приемах выполнение действия начинается с наименьших разрядов, а при устных со старших разрядов

.

Алгоритм письменного умножения представлен в том или ином виде в программе по математике для начальных классов по всем методикам. Обучение его происходит по всем методикам, но с некоторыми отличиями, в частности также как и изучение алгоритмов письменного сложения и вычитания по разным учебникам происходит в разные периоды. Если изучение алгоритма письменного умножения по Моро происходит уже в период изучения математики в концентре 1000, то Истомина предлагает изучение алгоритма значительно позднее. Изучение алгоритма по учебнику Истоминой наиболее рационально, т.к. там достаточно большое количество заданий по формированию умений письменного сложения, когда в учебнике Моро таких примеров очень мало.

Билет 18

Определение сложения натуральных чисел. Теоретико-множественный смысл суммы натуральных чисел. Правило вычитания числа из суммы, его теоретико-множественная интерпритация. Примеры заданий из начального курса математики, раскрывающих смысл суммы натуральных чисел.

Сложение натуральных чисел – это объединение конечных непересекающихся множеств. (если множество А содержит 5 элементов, а множество В – 4 элемента и пересечение множеств А и В, пусто, то число элементов в их объединении равно сумме 5 + 4).

Теоретико-множественных позиций сумма натуральных чисел а и в представляет собой число элементов в объединении конечных непересекающихся множеств А и В таких, что а = n(A), b = n(B): а + в = n(A) + n(B) = n(A  B), если А  В = .

Правило вычитания числа из суммы: чтобы вычесть число из суммы достаточно вычесть это число из любого слагаемого и полученному результату прибавить оставшееся слагаемое(другое, которое еще не задействовано).

Теор.множ.трактовка этого правила:

Для трех конечных мн-в А, В и С, таких, что а=n(А), в=n(В) и с=n(С), A B= Ø, С А

имеет место равенство: (А U В) \ С=(А\С) В, из этого следует, что число элементов в этой разности n((А В) \ С) равно разности элементов из объединения – число элементов во мн-ве С: n((А В) \ С)=n(А\C) B) = (а+в)-с=(а-с)+в n(А\C)+n(В) = (а-с)+в