Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Учебное пособие_Общая и биоорганическая химия.doc
Скачиваний:
1356
Добавлен:
22.02.2015
Размер:
5.72 Mб
Скачать

Задачи для самостоятельного решения

  1. К какому электроду будут передвигаться частицы белка (рI =4,0) при электрофорезе в ацетатном буфере, приготовленном из 10 мл раствора ацетата натрия с концентрацией 0,1 моль/л и 50 мл 0,2 моль/л уксусной кислоты (рКкислоты =4,76)?

  2. Будет ли происходить набухании е желатины (рI=4,7) в ацетатном буфере, приготовленном из 10 мл ацетата натрия и 100 мл уксусной кислоты (одинаковых концентраций) (рК=4,76).

  3. Изоэлектрическая точка пепсина желудочного сока равна 2,0. Как будет заряжен этот белок при нормальной кислотности желудочного сока взрослого человека. Ответ поясните.

  4. В двух пробирках раствор белка, имеются два электролита : сульфат натрия и хлорид свинца. Какой из электролитов необходимо добавить для осаждения белка без нарушения структуры? Каков механизм осаждения белков при использовании этих электролитов?

  5. Назовите и опишите реакции осаждения белка, применяемые в клинике. Почему эти реакции наиболее надёжны?

  6. К какому электроду будут передвигаться при электрофорезе белки b-лактоглобулины в буферном растворе с рН=8,6, если при рН=5,2 белок остается на старте?

  7. В какой среде необходимо прокипятить сыворотку крови для полного удаления белков, если ИЭТ белков крови меняется от 4,5 до 6,0?

  8. Какие реактивы необходимо использовать:

а) для получения безбелкового фильтрата крови;

б) для выделения белков для дальнейшего изучения структуры белков.

  1. Имеются следующие реактивы: сульфосалициловая кислота, конц.H2SO4 , крист. (NH4)2SO4, трихлоруксусная кислота, насыщ. раствор хлорида натрия. Объясните выбор растворов и механизм осаждения в каждом случае.

  2. ИЭТ гемоглобина рН = 6,68. Белок поместили в буферный раствор с концентрацией ионов водорода 10-6 моль/л. Определите направление движения молекул гемоглобина при электрофорезе. Известно, что рН в эритроцитах равен 7,25. Какой заряд имеют белковые молекулы гемоглобина при этом значении рН?

  3. К какому электроду будут передвигаться частицы белка (ИЭТ = 4,0) при электрофорезе в ацетатном буфере, приготовленном из 100 мл раствора ацетата натрия с концентрацией 0,1 моль/л и 50 мл раствора уксусной кислоты с концентрацией 0,2 моль/л? (рКкислоты=4,76)

Тестовые задания

Выберите один правильный ответ

1. Денатурация белка сопровождается:

1) нарушением первичной структуры

2) нарушением структур, кроме первичной

3) высаливанием

4) образованием четвертичной структуры

2. Изоэлектрическая точка белка гистона, содержащего большое количество аминокислоты лизина находится в растворе:

1) кислом 2) нейтральном 3) щелочном 4) нельзя определить

3. Высаливание белка протекает под воздействием:

1) температуры

2) конц. азотной кислоты

3) насыщенного раствора хлорида натрия

4) концентрированного раствора ацетета свинца

4. Заряд белка с изоэлектрической точкой 4,6 в крови:

1) положительный 2) отрицательный 3) не имеет заряда

5. Первичная структура белка поддерживается связями:

    1. водородными

    2. сложноэфирными

    3. электростатическими

    4. пептидными

    5. дисульфидными

  1. При кислотном гидролизе простых белков образуется:

    1. смесь аминокислот и двухатомных спиртов

    2. смесь аминокислот

    3. смесь различных эфиров

    4. смесь альдегидов и аминокислот

    5. смесь моносахаридов

  1. В образовании третичной структуры белков участвуют:

    1. гидрофобные взаимодействия

    2. водородные связи

    3. дисульфидные мостики

    4. электростатические взаимодействия

    5. все ответы правильные

  1. Четвертичная структура характерна для белков, имеющих в своем составе:

    1. несколько полипептидных цепей

    2. два азотистых основания

    3. несколько моносахаридных звеньев

    4. липидные фрагменты

    5. многоатомные спирты

  1. Разновидности вторичной структуры белка:

    1. полициклическая

    2. α –спираль и β- структура

    3. гетероциклическая

    4. простая и разветвленная цепь

    5. нет правильного ответа

  1. При денатурации белка не нарушается:

      1. вторичная структура

      2. четвертичная структура

      3. третичная структура

      4. первичная структура

      5. все перечисленные структуры.

ОСНОВНЫЕ ПРИНЦИПЫ КЛАССИФИКАЦИИ И НОМЕНКЛАТУРЫ ОРГАНИЧЕСКИХ СОЕДИНЕНИЙ. ПРОСТРАНСТВЕННОЕ СТРОЕНИЕ ОРГАНИЧЕСКИХ МОЛЕКУЛ. ЭЛЕКТРОННОЕ СТРОЕНИЕ ХИМИЧЕСКИХ СВЯЗЕЙ АТОМА УГЛЕРОДА И ВЗАИМНОЕ ВЛИЯНИЕ АТОМОВ В ОРГАНИЧЕСКИХ МОЛЕКУЛАХ.

СОПРЯЖЕННЫЕ СИСТЕМЫ

Основные принципы номенклатуры органических соединений

При построении названия по МН используются следующие операции:

1) выбор главной цепи,

2) нумерация цепи,

3) построения названия.

I. Выбор главной цепи: она не всегда самая длинная, но обязательно должна содержать старшую функциональную группу.

II.Нумерация цепи: главная функциональная группа должна иметь наименьший номер.

III.Название соединения.

При этом название состоит из следующих блоков:

Ключевым моментом в составлении названия является выбор основной цепи.

Алгоритм выбора основной цепи:

    1. В основную цепь должна входить старшая характеристическая группа

    2. В нее должны максимально быть включены кратные связи

    3. Основная цепь должна быть максимально длинной

    4. Выбирают самую разветвленную цепь.

    5. Цепь нумеруется так, чтобы сумма номеров заместителей была наименьшей. В качестве примера назовем следующее соединение:

пентен-4–ол-2

Сопряженные системы - это системы с чередующимися двойными и одинарными связями. Они могут быть открытыми и закрытыми. Открытая система имеется в диеновых углеводородах (УВ).

Сопряжение – процесс энергетически выгодный, энергия (Е) при этом выделяется.

Ароматичность. Это понятие, включающее различные свойства ароматических соединений.

Условия ароматичности:

  1. плоский замкнутый цикл;

  2. все атомы С находятся в sp2-гибридизации;

  3. образуется единая сопряженная система всех атомов цикла;

  4. выполняется правило Хюккеля: в сопряжении участвуют (4n + 2)р-электронов, где n = 1, 2, 3

  5. Простейший представитель ароматических углеводородов – бензол. Он соответствует всем четырем условиям ароматичности.

Правило Хюккеля: 4n + 2 = 6, n = 1.

Взаимное влияние атомов. Причиной смещения валентных электронов в

молекуле является различие в электроотрицательности элементов,

образующих молекулу.

Взаимное влияние атомов в молекуле передается двумя путями:

индуктивным и мезомерным эффектами.

Индуктивный эффект (I-эффект) – это передача электронного влияния заместителей по цепи σ-связей.

Электрооттягивающие заместители снижают элекронную плотность в системе σ-связей, и их называют электроноакцепторными, вызывая (-I) эффект. К ним относят: Hal, -OH, -OR, -NH2, -COH, -COOH, -NO2, -SO3H.

Элекроноподающие заместители повышают электроннную плотность в цепи σ-связей по сравнению с атомом водорода, т. е. проявляют +I эффект и являются элекронодонорными. К ним относятся атомы с низкой электроотрицательностью (алкил-радикалы, металлы), а также отрицательно заряженные атомы или группы, обладающие избытком электронной плотности, которую они стремятся перераспределить на соседние связи.

Мезомерный эффект, или эффект сопряжения (М-эффект), - это передача электронного влияния эаместителей по сопряжённой системе. Заместители влияют на одни и те же положения в кольце, но с различным результатом. Часть из них, которые имеют +М- и +I-эффекты, увеличивают электронную плотность в кольце в целом, и по о- и п-положениям относительно себя, в частности. Заместители подразделяют на две группы в зависимости от проявляемого ими эффекта (мезомерного или индуктивного): электронодонорные и электроноакцепторные. Электронодонорные заместители проявляют +М- и +I-эффект и повышают электронную плотность в сопряженной системе. К ним относятся гидроксильная группа —ОН и аминогруппа —NН2. Неподеленная пара электронов в этих группах вступает в общее сопряжение с p -электронной системой бензольного кольца и увеличивает длину сопряженной системы. В результате электронная плотность сосредоточивается в орто- и пара-положениях:

Алкильные группы не могут участвовать в общем сопряжении, но они проявляют +I-эффект, под действием которого происходит аналогичное перераспределение p -электронной плотности.

Электроноакцепторные заместители проявляют - М-эффект и снижают электронную плотность в сопряженной системе. К ним относятся нитрогрупла —NO2, сульфогруппа —SO3Н, альдегидная —СНО и карбоксильная —СООН группы.

Эти заместители образуют с бензольным кольцом общую сопряженную систему, но общее электронное облако смещается в сторону этих групп. Таким образом, общая электронная плотность в кольце уменьшается, причем меньше всего она уменьшается в мета-положениях:

Полностью галогенизированные алкильные радикалы (например, —ССl3) проявляют -I-эффект и также способствуют понижению электронной плотности кольца.

Закономерности преимущественного направления замещения в бензольном кольце называют правилами ориентации.

Заместители, обладающие +I-эффектом или +М-эффектом, способствуют электрофильному замещению в орто- и пара-положениях бензольного кольца и называются заместителями (ориентантами) первого рода:

Заместители, обладающие -I-эффектом или -М-эффектом, направляют электрофильное замещение в мета-положения бензольного кольца и называются заместителями (ориентантами) второго рода:

Так, толуол, содержащий заместитель первого рода, нитруется и бромируется в пара- и орто-положения:

Нитробензол, содержащий заместитель второго рода, нитруется и бромируется в мета-положение:

Помимо ориентирующего действия заместители оказывают влияние и на реакционную способность бензольного кольца: ориентанты 1-го рода (кроме галогенов) облегчают вступление второго заместителя; ориентанты 2-го рода (и галогены) затрудняют его.