Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
ответы на тмм (альбомный).docx
Скачиваний:
42
Добавлен:
24.09.2019
Размер:
2.06 Mб
Скачать

2..Понятие аналогов скорости и ускорения.

Введём понятия скорости и ускорения:

Рис. 32

т. М t

т. М’ t + t

( t - конечное).

Радиусы – векторы:         t

                                       t + t +

                                           =

 

За время t (рис. 32):

 (Направление по секущей MM’).

Скорость точки в момент времени t получается при t 0, то есть

  (Направление по касательной и траектории точки)

 

Очевидно:

 

Проекции :

.

 

Модуль (длина):

 

Скорость точки М в момент времени t равна производной по времени от радиуса – вектора точки и направлена по касательной к траектории.

Аналогично найдём ускорение (рис. 33).

 

Рис. 33

Совмещая начало векторов (t) и (t + t) в точке М => за t.

Среднее ускорение:

 (направление в сторону вогнутости траектории)

Ускорение точки в момент времени t получается при t 0, то есть

 

Очевидно:

 

Ускорение точки в некоторый момент времени равно производной по времени от вектора скорости, или второй производной по времени от радиуса – вектора точки в этот момент времени.

В некоторых задачах – используется производная более высоких порядков, но здесь они пока не нужны.

В механике применяются не только декартовы координаты – часто применяют обобщённые (криволинейные) координаты.

Они бывают удобней, позволяют определить конфигурацию рассматриваемой системы. Часто их называют позиционными. Криволинейными они называются потому, что линии вдоль которых меняется только одна координата, обычно бывают кривыми.

Экзаменационный билет № 4

1 . Структурный анализ механизма (на примере механизма). Характеристика звеньев плоских рычажных механизмов. Под структурным анализом механизма понимается определение количества звеньев и кинематических пар, определение степени подвижности механизма, а также установление класса и порядка механизма.  Степень подвижности пространственного механизма определяется по формуле Сомова - Малышева: 

W = 6n - (5P1 +4P2 + 3P3 + 2P4 + P5), (3.1)

где   - число одно-, двух-,трех-, четырех- и пятиподвижных кине-матических пар; n - число подвижных звеньев.  Степень подвижности плоского механизма определяется по формуле Чебышева: 

, где   - число низших, а   - число высших кинематических пар. В качестве примера рассмотрим четырехзвенный механизм рулевого управления автопилота (рис. 3.3): звенья 1 и 2 образуют цилиндрическую пару четвертого класса, имеющую две степени свободы; звенья 2-3 и 4-1 образуют вращательные пары пятого класса, имеющие одну степень свободы;  звенья 3-4 образуют шаровую пару третьего класса, имеющую три степени сво-боды; число подвижных звеньев равно трем, тогда 

W = 6х3 - 2х5 - 1х4 - 1х3 = 1 Степень подвижности данного механизма равна 1. Кинематическая цепь, число степеней свободы которой относительно элементов ее внешних кинематических пар равно нулю, называют структурной группой Ассура, по имени Л.В. Ассура, который впервые фундаментально исследовал и предложил структурную классификацию плоских стержневых механизмов. Пример образования плоского шестизвенного механизма дан на рис.3.4. 

Структура механизмов

Среди всего многообразия конструкций механизмов различают: стержневые (рычажные), кулачковые, фрикционные, зубчатые механизмы, механизмы с гибкими звеньями (например, ременные передачи) и др. виды. Менее распространенные классификации подразумевают наличие механизмов с низшими или высшими парами в плоском или пространственном исполнении и т.д.

        

                                                                                

В иды звеньев (рис. 2.6 и рис.2.7):                                                

с тойка – звено, принимаемое за неподвижное; такое звено в механизме может быть только одно;

кривошип – вращающееся звено рычажного механизма, которое может совершать полный оборот вокруг неподвижной оси;

коромысло – вращающееся звено рычажного механизма, которое может совершать только неполный оборот вокруг неподвижной оси;

шатун –  звено рычажного механизма, образующее кинематические пары только с подвижными звеньями;

кулиса –  звено рычажного механизма, вращающееся вокруг неподвижной оси и образующее с другим подвижным звеном поступательную пару; в зависимости от степени протяженности элемента поступательной пары различают «камень»  (звено меньшей протяженности) и «направляющую»;

ползун –  звено рычажного механизма, образующее поступательную пару со стойкой;

кулачок –  звено, имеющее элемент высшей пары, выполненный в виде поверхности переменной кривизны;

камень – звено, совершающее поступательное движение относительно подвижной направляющей, называемой кулисой;

зубчатое колесо – звено с замкнутой системой зубьев, обеспечивающее непрерывное движение другого зубчатого колеса или рейки.

Количество типов и видов механизмов исчисляется тысячами, поэтому классификация их необходима для выбора того или иного механизма из большого ряда существующих, а также для проведения синтеза механизма.

Универсальной классификации нет, но наиболее распространены 3 вида классификации:

Функциональная. По принципу выполнения технологического процесса механизмы делятся на механизмы: приведения в движение режущего инструмента; питания, загрузки, съёма детали; транспортирования и т.д.;

Структурно-конструктивная. Предусматривает разделение механизмов как по конструктивным особенностям, так и по структурным принципам. К этому виду относят механизмы: кривошипно-ползунный; кулисный; рычажно-зубчатый; кулачково-рычажный и т.д.;

Структурная. Проста, рациональна, тесно связана с образованием механизма, его строением, методами кинематического и силового анализа, была предложена Л.В. Ассуром в 1916 году и основана на принципе построения механизма путем наслоения (присоединения) кинематических цепей (в виде структурных групп) к начальному механизму. Согласно этой классификации, любой механизм можно получить из более простого присоединением к последнему кинематических цепей с числом степеней свободы W = 0, получивших название структурных групп, или групп Ассура. Недостаток классификации – неудобство для выбора механизма с требуемыми свойствами.