Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
ответы на тмм (альбомный).docx
Скачиваний:
42
Добавлен:
24.09.2019
Размер:
2.06 Mб
Скачать

2. Определение линейных скоростей графоаналитическим методом (пример)

Кинематический анализ механизма – исследование его основных параметров с целью изучения законов изменения и на основе этого выбор из ряда известных наилучшего механизма. Кинематический анализ механизма выполняется либо для заданного момента времени, либо для заданного положения входного звена; иногда для анализируемого положения механизма задают взаимное расположение каких-либо его звеньев.

Графоаналитический метод кинематического анализа

Графоаналитический метод называют методом планов скоростей и ускорений.

Задача о положениях решается графическим методом, то есть построением нескольких совмещённых планов механизма в выбранном масштабе длин.Задачи о скоростях и ускорениях решаются построением планов скоростей и ускорений звеньев механизма при определённых (заданных) положениях ведущего звена на основе заранее составленных векторных уравнений скоростей и ускорений звеньев механизма.

Преимущество этого метода по сравнению с графическим в том, что он менее трудоёмок, так как позволяет определять скорости и ускорения (их величину и направление) на одном плане скоростей или плане ускорений для множества точек механизма.

Следует помнить, что в основе построения планов скоростей и ускорений лежат законы плоскопараллельного движения. Согласно этим законам:

1. План скоростей (а также план ускорений) получается в результате графического решения векторных уравнений для определения скоростей (ускорений) точек в плоскопараллельном движении;

2. Векторы абсолютных скоростей точек (при рассмотрении их движения относительно неподвижного звена) изображаются исходящими из полюса плана, а направление совпадает с касательными к траектории движения. Векторы относительных скоростей точек (при их движении относительно подвижных точек) изображаются отрезками, соединяющими концы соответствующих векторов абсолютных скоростей;

3. Длина векторов относительных скоростей пропорциональна длине тех участков звеньев, которые являются радиусами вращения точек в их относительном движении. Это положение, известное под названием теоремы подобия, облегчает определение скоростей многих точек, лежащих на звеньях плоскопараллельного и вращательного движения.

П ример:

Дано: , и (рис.3.3).

Требуется определить: .

Зададимся неким масштабным коэффициентом .

Решение: Модуль скорости точки В можно определить по следующей формуле: . Линия действия вектора скорости точки В перпендикулярна звену АВ, а сам вектор направлен в сторону вращения звена АВ.

Допустим, что точка С не закреплена, и представим себе, что все точки звена ВС совершают переносное движение со скоростью , то есть . С одной стороны , с другой стороны .

Вернём точку на действительную траекторию , для чего придадим точке скорость относительного вращательного движения около точки со скоростью относительного движения . На плане скоростей векторы, исходящие из полюса скоростей Р являются векторами абсолютных скоростей соответствующих точек, а векторы, которые не проходят через полюс плана ускорений, являются относительных скоростей соответствующих точек. Отрезок pa является планом скоростей звена АВ, а отрезок bc является планом скоростей звена ВС.