Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
dokumen_pub_theory-and-methods-of-quantification-design-on-system-level-electromagnetic-compatibility-1st-ed-978-981-13-3689-8-978-981-13-3690-4.pdf
Скачиваний:
34
Добавлен:
09.12.2022
Размер:
21.24 Mб
Скачать

284

6 Application Cases of System-Level EMC Quantitative …

(a)

power spectrum density, dBm

(c)

power spectrum density, dBm

definition of interference margin

(b)

power spectrum density, dBm

receiving sensitivity

receiving sensitivity

strength of the receiving signal

strength of the receiving signal

definition of interference margin

Frequency, log

Frequency, log

(d)

power spectrum density, dBm

receiving sensitivity

receiving sensitivity

strength of the receiving signal

strength of the receiving signal

definition of interference margin

Frequency, log

Frequency, log

Fig. 6.14 Margin design method, a transmitting spectrum and receiving spectrum, b adjustment to make E2 compatible, c parallel adjustment of E2–E3 to make R4 compatible, d E2–E3 rotation adjustment around the frequency point where R4 is located for compatibility

6.3.3The Collaborative Optimization Method for Multiple EMC Indicators

The multi-indicator collaborative dynamic design method refers to taking into account and collaboratively adjust multiple EMC design indicators according to equipment weights and indicator weights, and select an optimal solution to make the design compatible. Obviously, compared with the single-indicator design method, the multi-indicator collaborative design tends to be more in line with the actual situation, and the global optimization can be achieved with the minimum cost-effectiveness. The collaborative design method of indicators is shown in Fig. 6.15.

After generating multiple sets of EMC design schemes, the ANP-TOPSIS method is used for scheme evaluation.

The ANP method has been introduced in Sect. 6.3.1. The Technique for Order of Preference by Similarity to Ideal Solution (TOPSIS) is a commonly used evaluation method. Its main idea is to measure the Euclidean distance of a multi-dimensional

6.3 Method for System-Level EMC Quantitative Design

285

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 6.15 Collaborative design method of indicator

indicator space to rank the schemes according to their advantages and disadvantages. The general steps for ranking the schemes using the TOPSIS method are as follows:

(1)Construct an initial evaluation matrix C.

(2)Normalize the decision matrix.

(3)Calculating a weight matrix for the normalized matrix in (1).

(4)Determine the positive ideal point X+ and the negative ideal point X.

(5)Calculate the Euclidean distance of each scheme to the positive ideal point di+ and the negative ideal point di.

(6)Calculate the closeness of each solution to the ideal solution di .

(7)Rank the schemes in descending order di .

ANP-TOPSIS scheme evaluation (Fig. 6.16): First, identify the indicators to be involved in the evaluation and design; then construct the network (ANP) of the evaluation system, including the calculation of the unweighted supermatrix, the weighted supermatrix and the limit weighted supermatrix; finally, rank the schemes according to TOPSIS, including constructing the normalized decision supermatrix, determining the positive ideal point and the negative ideal point of the weighted normalization matrix, calculating the Euclidean distance from each scheme to the positive ideal point and the negative ideal points, calculating the closeness of each scheme to the ideal point, and ranking the schemes according to the closeness. The parameters in the ranked scheme are the parameters of the indicator decomposition, as shown in Fig. 6.16.

Since the aircraft EMC indicators appear in many types such as precise number, interval number, and fuzzy number [69], the evaluation of aircraft EMC is a multiattribute decision-making problem of indicators. For the convenience of our readers,

286

 

 

6 Application Cases of System-Level EMC Quantitative …

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 6.16 Flowchart of scheme evaluation

6.3 Method for System-Level EMC Quantitative Design

287

here we explain the type of indicators and their metrics. Since the precise number type is self-explained, we focus on the interval number type and fuzzy number type.

1. The definition and operation rule of interval numbers

 

 

U

 

L

 

U

 

 

Definition 1 a

 

aL , aU is called the number with closed intervals, where aL

 

R, a

 

R, and a

 

a

 

. The total number of closed intervals on R is denoted as

R

.

 

 

 

 

 

 

 

 

The operation rule of the interval number: Let a aL , aU and b bL , bU be two arbitrary positive closed interval numbers, and the interval number can be calculated using

 

 

 

 

 

a

L

 

+ b

L

, a

U

+ b

U

 

a + b

 

L

 

 

 

U

 

 

 

 

 

 

 

 

 

 

 

L

 

 

 

 

U

 

 

 

 

 

×

b

 

a

 

 

b , a b

 

 

 

 

 

 

 

 

 

 

a

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

L

 

 

 

 

U

 

 

 

 

 

 

 

 

 

a ÷ b

 

a

 

,

a

 

 

 

 

 

 

 

(6.10)

bL

 

bU

 

 

 

 

 

 

 

 

 

 

 

L

 

 

 

 

 

 

U

(k > 0)

 

 

 

ka , ka

 

 

 

ka

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1

 

 

1

 

 

 

1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

,

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

a

 

a

 

a

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2. The definition and operation rule of fuzzy numbers

Definition 2 a al , am , au is called a triangular fuzzy number, if its membership function is ua (x) : R [0, 1], i.e.,

0

xal

ua (x) am al xau

am au

0

x al

al < x < am

(6.11)

(am < x < au ) (x > au )

u

 

R, 0 < al

am

au

 

Ψ, Ψ

[

]

is any real interval; when al

 

am

 

where x

 

 

 

 

l, L

 

 

 

a , a represents a nonfuzzy number.

The triangular fuzzy number is intuitive and easy to use. It can express multiple language variables. If the experts have higher evaluation of an object, we shall choose the larger number for aL , aM , aU ; if the evaluation is lower, we shall choose the smaller number. For the evaluation of indicator attributes, seven variables, “Extra Low” (EL), “Very Low” (VL), “Low” (L), “Medium” (M), “High” (H), “Very High” (VH), “Extra High” (EH), can be used and they can be recorded as

E L (0, 0, 0.1), V L (0.1, 0.2, 0.3), L (0.2, 0.3, 0.4), M (0.4, 0.5, 0.6), H (0., 0.7, 0.8),

V H (0.8, 0.9, 1.0), E H (0.9, 1.0, 1.0)

Considering any two triangular fuzzy numbers a al , am , au and bbl , bm , bu , there is a corresponding fuzzy number operation rule:

288 6 Application Cases of System-Level EMC Quantitative …

a b al + bl , am + bm , au + bu

 

 

λ

 

a

 

λal , λam , λau

(λ > 0, λ

 

R)

 

 

1

 

1

 

 

 

1

 

 

1

,

 

 

 

,

 

 

 

 

a

u

a

m

l

 

 

 

 

a

 

a

 

 

 

where and represent the addition and multiplication of fuzzy numbers, respectively.

Now, we explain the ANP-TOPSIS method using the EMC design of the communication station as an example. The comprehensive evaluation indicators of the communication station are receiver sensitivity, IF rejection ratio, transmitter power, antenna isolation, VSWR of antenna, case shielding effectiveness, and frequency band coupling.

First, the weights of the indicators are calculated using ANP method, as shown in Table 6.7. Next, the seven design indicators are listed as a set Q {Q1, Q2, . . . , Q7} where in terms of indicator attributes, Q1 and Q3 are interval number indicators; Q2, Q4, Q5, and Q6 are precise number indicator; Q7 is the fuzzy indicator. Q6 is a score value, ranging from 1 point (worst) to 10 points (best). Q7 is a level indicator, which includes seven levels: “no coupling,” “not serious at all,” “not serious,” “common,” “serious,” “very serious,” and “extremely serious.” In terms of indicator types, Q1, Q2, Q4, and Q6 are indicators of benefit (the bigger the better), and the other three are indicators of cost (the smaller the better).

There are four shortwave radio design solutions, and we need to select a good one. These four schemes are defined by the metrics of the seven indicators. For example, in scheme 1, the short-wave receiver has a sensitivity range of 90–105 dBm in various adjustment modes and an IF rejection ratio of 65 dB. The short-wave transmitting power range is 60–85 W. The antenna isolation with a certain piece of core equipment is 55 dB. The VSWR of the antenna is 1.2. The shielding effectiveness of the case is 7 dB. The frequency band coupling with other frequency equipment of the whole aircraft is at a common level. The EMC indicators of these four design schemes are listed in Table 6.7.

Firstly, the fuzzy number of the indicator Q7 is analyzed and calculated. According to the corresponding relationship between the triangular fuzzy number and the

Table 6.7 EMC performance indicators of the four design schemes

Scheme

EMC indicators

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Q1/dBm

Q2/dB

Q3/W

Q4/dB

Q5

Q6

Q7

 

 

 

 

 

 

 

 

1

90–105

65

60–85

55

1.2

7

Common

 

 

 

 

 

 

 

 

2

95–110

68

70–90

65

1.8

5

Serious

 

 

 

 

 

 

 

 

3

85–100

70

80–100

60

1.5

8

Not serious at

 

 

 

 

 

 

 

all

 

 

 

 

 

 

 

 

4

100–120

62

75–95

75

1.6

7

Very serious

 

 

 

 

 

 

 

 

Indicator

0.2204

0.1233

0.1774

0.1742

0.1342

0.112

0.0585

weights

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

6.3 Method for System-Level EMC Quantitative Design

289

language description variable introduced above, the qualitative indicator is represented by the triangular fuzzy number. The seven levels of the indicator, from low to high, are expressed as (0 0 0.1), (0.1 0.2 0.3), (0.2 0.3 0.4), (0.4 0.5 0.6), (0.6 0.7 0.8), (0.8 0.9 1.0), and (0.9 0.9 1.0). Then, we can derive the decision matrix

 

 

 

 

 

 

 

 

 

 

 

(90, 105) 65

[60, 85]

55 1.2 7

 

0.4 0.5 0.6

 

 

 

 

 

 

 

 

 

 

 

 

 

(95, 110) 68

[70, 90]

65 1.8 5

 

0.6 0.7 0.8

 

 

 

 

 

 

 

 

 

 

A

 

(6.12)

 

 

 

 

 

 

 

 

(85, 100) 70 [80, 100] 60 1.5 8

 

0.1 0.2 0.3

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(100, 120) 62

[75, 95]

75 1.6 7

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0.8 0.9 1.0

 

 

 

 

 

Next, we normalize the decision matrix

 

and obtain

 

 

 

 

 

 

 

A

 

 

 

 

 

 

 

 

 

 

 

(0.4128, 0.5665) 0.4901 [0.4119, 0.7666] 0.4285 0.3895 0.5119

0.16 0.35 0.62

!

 

 

 

 

 

 

 

 

(0.4358, 0.5935) 0.5127 [0.3889, 0.6571] 0.5064 0.5843 0.3656

0.12 0.25 0.41

!

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

B

 

 

(0.3889, 0.5395) 0.5277 [0.3501, 0.5749] 0.4674 0.4869 0.5850

0.32 0.88 0.46

 

 

 

 

 

 

 

 

!

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(0.4587, 0.6475) 0.4674 [0.3685, 0.6133] 0.5843 0.5194 0.5119

0.09 0.19 0.31

!

 

 

 

The normalized decision matrix is then weighted to obtain

 

 

 

 

 

 

 

 

 

(0.0930, 0.1249)

0.0604 [0.0731, 0.1360] 0.0746 0.0679 0.0687

0.0094 0.0205 0.0363

!

 

 

 

 

 

(0.0961, 0.1308)

0.0637 [0.0690, 0.1166] 0.0882 0.1018 0.0491

0.0070 0.0146 0.0240

!

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

G

 

 

(0.0859, 0.1189)

0.0651 [0.0621, 0.1020] 0.0814 0.0848 0.0785

0.0187 0.0515 0.1439

 

 

 

 

!

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(0.1011, 0.1427)

0.0576 [0.0654, 0.1088] 0.1018 0.0905 0.0687

0.0053 0.0111 0.0181

!

According to the above equations, the positive ideal point X+ and the negative ideal point Xare calculated as

X + [(0.1011, 0.1427), 0.0651, (0.0731, 0.1360), 0.1018, 0.1018, 0.0785, (0.0187, 0.0515, 0.1439)]

X [(0.0859, 0.1189), 0.0576, (0.0621, 0.1020), 0.0746, 0.0679, 0.0491, (0.0053, 0.0111, 0.0240)]

The Euclidean distance di+ from each scheme to the positive ideal point X+\ and the distance from Xto the negative ideal point dican be determined

d1+ 0.1124, d10.0533

 

d2+ 0.1339, d20.0483

 

d3+ 0.1448, d30.0652

 

d4+ 0.1383, d40.0574

(6.13)

290

6 Application Cases of System-Level EMC Quantitative …

Finally, the closeness of the four schemes to the positive ideal point is calculated

as

d1

0.3217, d2

0.2978

 

d3

0.3105, d4

0.2933

(6.14)

According to the above calculation results, the ranking of the advantages and disadvantages of the scheme can be obtained. For the design of a communication station, the comparison results of the four schemes given in Table 6.7 are scheme 1 > scheme 2 > scheme 3 > scheme 4.