Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Ответы все.docx
Скачиваний:
42
Добавлен:
06.08.2019
Размер:
2.36 Mб
Скачать
  1. Условия экстремума функции.

Необходимое условие локального экстремума доставляет теорема Ферма. Очевидно, она допускает следующее усиление.

Теорема 1. Если функция определена в некоторой окрестности точки и имеет в ней локальный экстремум, то либо функция не дифференцируема в точке , либо (1)

Определение 1. Если дифференцируемая в точке функция удовлетворяет условию (1), то эта точка называется стационарной точкой функции .

Следующая очевидная теорема доставляет достаточное условие локального экстремума функции, а также достаточные условия отсутствия этого экстремума.

Теорема 2 (достаточное условие локального экстремума в терминах первой производной). Пусть функция определена в некоторой окрестности точки , непрерывна в самой точке и дифференцируема в проколотой окрестности этой точки. Тогда если при “переходе” через точку “слева на право” производная меняет знак с плюса на минус, то в точке функция имеет локальный максимум. Если же при таком переходе через точку производная меняет знак с минуса на плюс, то в точке она имеет локальный минимум. Наконец, если при переходе через точку производная не меняет своего знака, то в этой точке нет локального экстремума.

Теорема 3 (достаточное условие локального экстремума в терминах высших производных). Пусть функция раз дифференцируема в точке ( ). Тогда если (2) и , то при нечетном в точке нет локального экстремума, а при четном есть, при этом в последнем случае (т.е. при , ) если , то в этой точке она имеет локальный максимум, а если , то она имеет в ней локальный минимум.

Д о к а з а т е л ь с т в о. В силу условия (2) локальная формула Тейлора функции в точке имеет вид , а поскольку , где при , то ее можно переписать в виде . (3)

Теперь заметим, что если разность , стоящая здесь слева не меняет знака при переходе через точку , то в этой точке функция имеет локальный экстремум, а если при таком переходе эта разность меняет знак, то в точке нет локального экстремума. Далее сделаем следующее важное\ Замечание А. Так как при и , то в достаточно малой окрестности точки знак выражения, стоящего в квадратных скобках в формуле (3), будет неизменным и будет совпадать со знаком производной . Поэтому в указанной окрестности правая, а значит и левая часть формулы (3), будет менять свой знак тогда и только тогда, когда меняет свой знак многочлен , а он очевидно при переходе через точку меняет свой знак, когда - нечетное и не меняет его, когда - четное.

Таким образом, резюмируя сказанное заключаем, что

1) если - четное, то разность не меняет свой знак в окрестности и, следовательно, функция имеет в этой точке локальный экстремум;

2) если же - нечетное, то разность меняет свой знак в окрестности и, следовательно, функция не имеет в этой точке локального экстремума .

Тип локального экстремума в точке при - четном определяется знаком разности : если он положительный, т.е. если (см.(3) и замечание А), то в точке функция имеет локальный минимум, а если он отрицательный, т. е. если , то в ней она имеет локальный максимум □