Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Том 2.pdf
Скачиваний:
56
Добавлен:
01.06.2015
Размер:
10.04 Mб
Скачать

ется возможность идентификации при помощи ЭФИ постинфарктных больных с высоким риском внезапной смерти, что еще больше расширит границы клинического применения электрофизиологического тестирования.

ГЛАВА 11. Поздние желудочковые потенциалы: механизмы, методы исследования, распространенность и клиническое значение

Г. Брейтхардт и М. Боргриф (G. Breithardt и М. Borggrefe)

В последние годы экспериментальные и клинические исследования позволили получить убедительные доказательства того, что циркуляция возбуждения играет основную роль в развитии наиболее опасных нарушений ритма желудочков [1—5]. Для возникновения циркуляции необходим ряд условий, включая однонаправленный блок, замедленное проведение и медленное восстановление возбудимости ткани перед фронтом волны активации [5]. В связи с этим одной из наиболее ярких находок, предположительно обусловленных медленным проведением, явилось обнаружение задержанной фракционированной электрической активности во время диастолы в области экспериментального инфаркта миокарда [1—3]. Поскольку наблюдаемые потенциалы наиболее часто связаны с сегментом ST, они получили название «поздних потенциалов» [7]. Они характеризуются множественными низкоамплитудными зубцами, иногда разделенными изоэлектрическими интервалами. Наличие таких ЭГ-проявлений при синусовом ритме может указывать на потенциальную локализацию цепей циркуляции возбуждения. Задержанные и фрагментарные потенциалы наблюдались при эпикардиальном и эндокардиальном картировании во время хирургической операции (рис. 11.1) [6—9], а также при эндокардиальном картировании с помощью катетерного электрода у больных с желудочковой тахикардией [10, 11].

Сравнительно недавно поздние желудочковые потенциалы удалось зарегистрировать с помощью неинвазивных методов при использовании соответствующей техники регистрации и фильтрации сигналов [7, 12—19]. В этой главе обсуждаются методы регистрации и доступные в настоящее время клинические данные, полученные у больных с желудочковой тахикардией, а также возможная роль поздних потенциалов в идентификации больных с риском желудочковой тахиаритмии после инфаркта миокарда.

Электрофизиологические и анатомические основы поздних желудочковых потенциалов

El-Sherif и соавт. [1] с помощью специально сконструированных композитных электродов зарегистрировали при экспериментальном инфаркте миокарда непрерывную электрическую активность, регулярно и предсказуемо возникавшую на протяжении всего диастолического интервала между основным возбуждением и циркуляторными возбуждениями, а также между последовательными циркуляторными возбуждениями (рис. 11.2). Эти данные подтверждаются известными анатомическими характеристиками инфаркта миокарда, в зоне которого могут существовать островки относительно жизнеспособной миокардиальной ткани, перемежающейся участками некроза. Несколькими годами раньше Waldo и Kaiser [20], используя биполярные электроды, зарегистрировали при экспериментальном инфаркте миокарда аналогичную непрерывную электрическую активность. Подобная активность предшествует появлению желудочковой аритмии.

Рис. 11.1. Регистрация фрагментарной активности с помощью метода эндокардиального биполярного картирования во время операции у больного с подтвержденной желудочковой тахикардией. Регистрация осуществлялась в пограничной зоне аневризмы. Фрагментарная активность начинается до окончания комплекса QRS на стандартной ЭКГ и захватывает часть сегмента ST.

Позднее были осуществлены более детальные исследования электрофизиологических и анатомических основ поздних желудочковых потенциалов. Gardner и соавт. [21] удалось показать, что медленное проведение, обусловленное угнетением потенциала покоя и уменьшением скорости нарастания потенциала действия при повышении концентрации калия в перфузионном растворе, сопровождается снижением амплитуды и увеличением их длительности на ЭГ, но не вызывает фрагментарной активности. Следовательно, медленное проведение как таковое неспособно вызвать фрагментарную активность. Электрическая активность с выраженной фрагментарностью наблюдается только на ЭГ препаратов из зоны хронического инфаркта, в которой интерстициальный фиброз привел к образованию изолирующих границ между мышечными пучками. Следовательно, отдельные компоненты фрагментарных электрограмм скорее всего отражают асинхронную электрическую активность каждого изолированного пучка выжившего миокарда вблизи места регистрации. Естественная асимметрия активации миокарда вследствие выделенной ориентации волокон усиливается инфарктом и может предрасполагать к возникновению циркуляции возбуждения [21, 22]. Трансмембранные потенциалы кардиомиоцитов в областях с фрагментарной активностью, расположенных на эпикардиальной границе зоны зажившего инфаркта, имеют нормальные характеристики без признаков угнетения [21]. Наблюдаемое в этой зоне медленное проведение объясняется сокращением числа контактов между мышечными волокнами. Снижение амплитуды на ЭГ, по-видимому, является результатом того, что под регистрирующим электродом оказывается очень мало выживших мышечных волокон, которые в основном замещены соединительной тканью; это снижение не связано с угнетением потенциалов действия. Следовательно, в тех областях, где регистрируется фрагментарная активность, указывающая на медленное неоднородное проведение, по-видимому, имеется анатомический субстрат для циркуляции возбуждения. Однако подобные электрограммы могут быть по-

лучены в области, где миокардиальные волокна разделены соединительной тканью даже в отсутствие циркуляции возбуждения. Richards и соавт. [22] удалось показать, что поддерживающаяся циркуляция может возникать на очень небольших (объемом 5 см3) участках эпикарда, где регистрируется фрагментарная активность.

Рис. 11.2. Нарушение проведения в зоне экспериментального инфаркта, которое вызывает циркуляцию возбуждения.

Ниже представлены стандартная ЭКГ и регистрация активности в зоне ишемии (ЗИ) с помощью композитного электрода (Комп) и трех биполярных электродов (Бип 1, Бип 2 и Бип 3), расположенных недалеко друг от друга. На фрагменте Б композитный электрод (точечная линия) не покрывает всего пути циркуляции, поэтому последовательность регистрируемой им активности в ишемической зоне (Комп) в виде многочисленных асинхронных пиков не является непрерывной [1].

Четкая корреляция между наличием непрерывной фрагментарной электрической активности и стабильностью желудочковой тахикардии была продемонстрирована Garan и соавт. [23]. Эти исследования показали, что электрическая стимуляция, которая возбуждает желудочки, не влияя на непрерывную электрическую активность, не способна прекратить желудочковую тахикардию. Однако трансформация непрерывной активности в прерывистую, судя по дискретным ЭГ, полученным при быстрой стимуляции, прекращает желудочковую тахикардию. Приостановка непрерывной электрической активности однократным электрическим стимулом без возбуждения всей массы желудочков во время желудочковой тахикардии способно устранить тахикардию. Хирургическое удаление участка, где поддерживается непрерывная электрическая активность, исклю-

чает возможность инициации желудочковой та хикардии. Это подтверждается и наблюдениями за больными с желудочковой тахикардией, у которых склонность к данному нарушению ритма была успешно устранена в результате хирургического вмешательства [24, 25]. Проведенные исследования ясно показывают патогенетическое значение участков с непрерывной активностью для развития желудочковой тахикардии.

Высказывалось также предположение о том, что фрагментарная активность, регистрируется в клинических исследованиях с помощью внутриполостных катетерных электродов [10, 11, 26], может быть всего лишь артефактом метода регистрации вследствие движения катетерного электрода относительно ткани или искажения электрограмм из-за частотных характеристик усилителей [27]. Однако такие электрограммы с фрагментарной активностью могут быть получены и с помощью униполярных или биполярных электродов на изолированных перфузируемых препаратах, механическое движение которых пренебрежимо мало. Поскольку такие электроды обеспечивают непрерывный и высококачественный контакт с тканью, очевидно, что получаемые электрограммы с фрагментарной активностью не являются артефактными.

Методологические аспекты неинвазивной регистрации поздних желудочковых потенци - алов

Амплитуда поздних желудочковых потенциалов составляет единицы милливольт даже при прямой регистрации биполярными электродами на поверхности миокарда. При обычной электрокардиографии такие сигналы редко регистрируются на поверхности тела [28]. Однако их все же можно записать с поверхности тела при высоком усилении электрокардиографического сигнала и использовании методов компьютерного усреднения, как это было впервые показано Berbari и соавт. [12] в эксперименте на животных, а также Fontaine и соавт. [7] — у больных с идиопатической желудочковой тахикардией. Это подтверждается множеством последующих работ [13—19, 29, 30].

Основная проблема при большом усилении сигнала состоит в повышении уровня шума, генерируемого несколькими источниками (табл. 11.1), что вынуждает использовать различные методы подавления шума. Амплитуда полезного сигнала в таких случаях часто меньше электрического шума того или иного источника. Кроме тщательного экранирования кабеля и использования почти бесшумных входных предусилителей, для устранения оставшегося случайного шума применяется также усреднение сигнала. С возрастанием числа усредняемых записей амплитуда шума, накладывающегося случайным образом на каждую запись, снижается, тогда как амплитуда повторяющегося истинного сигнала стабилизируется, увеличивая таким образом отношение сигнал — шум (рис. 11.3). В разработанной нами системе для получения стабильного сигнала достаточно получить от 100 до 200 повторений.

Таблица 11.1. Причины шумов при ЭКГ-регистрации с высоким усилением

Шумы окружающей среды Шум, генерируемый на границе между кожей и электродом Миотический шум Шум усилителя

Этот метод применим только для повторяющихся электрокардиографических сигналов и не способен выявлять динамические изменения сигнала в последовательных регистрациях.

Частота оцифровки сигнала в системе накопления и усреднения записей определяется частотной составляющей этого сигнала. Для получения хорошего качества частотные характеристики прибора должны соответствовать частотной составляющей сигнала. В идеале входной сигнал, включая шум, не должен иметь составляющих с часто-

той выше частоты оцифровки. Частотные компоненты входного сигнала с частотой, превышающей половину частоты оцифровки, вызывают смещение частотных составляющих, располагающихся в спектре ниже половины частоты оцифровки, на столько же герц, насколько эти составляющие в исходном сигнале превышают данный предел. В нашей системе смещенные частотные компоненты не создают никаких проблем, так как входной сигнал фильтруется аналоговым фильтром с частотой пропускания до 300 Гц и оцифровывается с частотой 10 кГц [14].

Одной из проблем высокого усиления биологических сигналов является «звон» фильтра, особенно при использовании фильтров с мощными характеристиками [31]. Такое явление может возникнуть при быстром спаде высокоамплитудного сигнала к нулевой линии. Обычные методы фильтрации значительно усиленного комплекса QRS искажают окончание сигнала. Интенсивность звона фильтра увеличивается при повышении нижней частоты пропускания. Однако устранение низкочастотных компонентов сигнала является необходимым условием для предотвращения насыщения усилителя во время сегмента ST при исключительно высоком усилении, используемом для детектирования поздних потенциалов, а также для исключения дыхательных колебаний. Таким образом, во всех работах, посвященных изучению поздних потенциалов, необходимо указывать характеристики фильтра. Было показано, что в некоторых схемах фильтров после окончания комплекса QRS довольно продолжительное время отмечаются многократные колебания сигнала (звон) [18]. В нашей системе, в которой используется однополюсный фильтр (6 дБ на 1 октаву), возможны только кратковременные колебания в течение нескольких миллисекунд после резкого окончания прямоугольного сигнала (рис. 11.4). Разумеется, это тоже может мешать выявлению коротких низкоамплитудных сигналов непосредственно после окончания комплекса QRS. Однако такой звон не оказывает существенного влияния на сигналы, появляющиеся более чем через 20 мс после резкого окончания QRS. Simson и соавт. [18] предложили иное решение, основанное на использовании двусторонних фильтров, обрабатывающих комплекс QRS в обратном направлении во времени после их компьютерной регистрации. Таким способом удается детектировать низкоамплитудные сигналы в терминальной части комплекса QRS без какого-либо влияния звона фильтра после окончания высокоамплитудного сигнала комплекса QRS, предшествующего поздним потенциалам.

Рис. 11.3. Постепенное улучшение качества конечного сигнала по мере увеличения числа усредненных циклов в диапазоне от 1 до 1000 у больного с аневризмой левого желудочка и желудочковой тахикардией. Наблюдаемая высокочастотная активность представляет собой поздний потенциал, возникающий вскоре после комплекса QRS.

Одно из требований метода усреднения сигнала — идентичность усредненных желудочковых комплексов. Следовательно, необходимо исключить преждевременные возбуждения. Этого можно добиться либо путем простого исключения всех возбуждений с заданной степенью преждевременности [14], либо более специфично — посредством пропускания всех ЭКГ-сигналов через программу распознавания символов для устранения эктопических возбуждений и слишком зашумленных сигналов [18]. При последнем подходе первые 8 возбуждений принимаются как эталон, если среднее стандартное отклонение сигнала в этой группе меньше 20 мкВ. Все последующие возбуждения сравниваются с эталоном и принимаются, если отклонение меньше двукратного стандартного