Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Пол курс информатики_4.doc
Скачиваний:
19
Добавлен:
26.11.2019
Размер:
4.36 Mб
Скачать

5.4.1.3. Расчетные формулы

Из приведённой типизации и схематизации получаем двумерную нестационарную математическую модель формирования качества воды, которая описывается уравнением вида

(2.29)

где С- концентрация загрязняющих веществ, Vcp- средняя скорость течения водного объекта, Dy- коэффициент турбулентной диффузии, К1- коэффициент неконсервативности.

Для математического решения дифференциального уравнения выбираем метод конечных разностей с граничными условиями второго рода

По явной конечно-разностной схеме выбранное дифференциальное уравнение можно представить в виде

(2.30)

Основные принципы:

Моделирование ведётся с постоянными характеристиками по сечению каждого участка

В направлении течения возможно задание новых гидрологических характеристик: скорости, ширины реки, коэффициентов поперечной диффузии

В случае ветвления участка реки, распределение масс загрязняющих веществ происходит пропорционально расходу воды в каждом из водотоков

Моделирование ведётся раздельно для каждого из источников загрязнения, общий результат распределения концентраций получается суммированием полей концентраций от всех водовыпусков с полем фоновых значений.

5.4.1.4. Расчётные параметры

Для математических расчетов распределения неконсервативных примесей в водотоках распределением концентрации примесей по вертикали потока пренебрегают, также не учитывается фактор времени. В данной системе за основу принято уравнение для однородной изотропной стационарной двумерной модели с учетом самоочищения:

(2.31)

Для расчета этого дифференциального уравнения используется дискретный метод, для чего весь участок реки разбивается на участки, исходя из условий устойчивости. Количество участков по длине и ширине участка реки определяется параметрами Mx и Ny соответственно. При выборе этих параметров должно выполняться соотношение:

, (2.32)

где hx – величина шага по длине реки ( L / Mx ), hy – величина шага по ширине реки ( B / Ny ), Dy – поперечная диффузия, Vx – скорость течения реки.

5.4.1.5. Расчет поперечной диффузии

Поперечная диффузия (Dy) – параметр, определяющий интенсивность распространения загрязнения по ширине участка реки. Он может определяться различными способами, выбор которого должен быть обусловлен гидрологическими характеристиками реки и имеющимися данными. Ниже приведены возможные способы расчёта Dy [3].

Методы расчета поперечной диффузии.

1. Метод Элдера (для лабораторных условий).

; ; ; (2.33)

2. Метод Потапова (для естественных течений).

. (2.34)

3. Метод Караушева (для естественных течений).

; ; . (2.35)

4. Метод Банзала (для естественных течений).

(2.36)

5. Комбинированный метод (для естественных течений).

; (2.37)

.

В этих уравнениях: R – гидравлический радиус; J – гидрологический уклон свободной поверхности реки; g – гравитационное ускорение (g = 9,80665); Н – средняя глубина реки; B – средняя ширина реки; Vx – средняя скорость течения реки; Сш – коэффициент Шези; Nш – коэффициент шероховатости русла; f – коэффициент извилистости русла; М, m – вспомогательные коэффициенты.

Концентрация начального разбавления (Сн.р.) – начальная концентрация вещества в месте выброса. При расчете начального разбавления для каждого источника любой конфигурации используются следующие соотношения:

; ; (2.38)

,

где Сср* - среднее значение концентрации (уравнение баланса вещества), Сст – концентрация стока одного источника по одному показателю, Сф – фоновая концентрация, Q – расход воды в реке, q – расход воды в источнике, Ny – число клеток по ширине реки, Nз – число клеток загрязнения. Nз рассчитывается исходя из конфигурации источника, если источник сосредоточенный, то, обычно это одна клетка.

Для каждого источника рассчитывается относительное начальное разбавление (за вычетом фоновой концентрации) и все источники помещаются на обнуленное поле концентраций, соблюдая их конфигурацию. Затем происходит перерасчет всего поля концентраций с начала участка и до конца по течению с захватом всех встретившихся источников.

Таким образом, концентрация начального разбавления для источника, находящегося ниже по течению относительно другого определяется как его относительная концентрация начального разбавления плюс относительная концентрация вещества в точке выброса плюс фоновая концентрация.