Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Пол курс информатики_4.doc
Скачиваний:
19
Добавлен:
26.11.2019
Размер:
4.36 Mб
Скачать

5.2. Расчеты процессов конвективно-диффузионного переноса (кдп)

Типизация водных объектов по условиям конвективно-диффузионного переноса (КДП) и превращения веществ ПВ должна представлять гидродинамическое, гидрохимическое и гидробиологическое районирование водных бассейнов с выделением однотипных по гидродинамическим, гидрохимическим и гидробиологическим особенностям и возможностям поддержания стабильных биологических процессов и устойчивых экологических циклов расчётных схем участков.

Схематизация процесса связана с разработкой различных способов упрощения природной обстановки при решении конкретных задач. Схематизация должна состоять в определённом упрощении природных условий, как в пределах отдельных выделенных участков, так и всего бассейна в целом. На первом этапе производится упрощение природных условий и составление исходной диффузионной и первичной модельной схем, затем выполняется дальнейшая схематизация с применением моделирования, связанная с уточнением расчётных значений элементов модели и вида задания их в окончательной схеме. Третий этап посвящён обоснованию достоверности принятой схематизации и окончательному построению модели.

В зависимости от ширины водного объекта выделяются три группы: большие, средние, малые; для рек выделятся четвёртая группа – ручьи. По глубине водные объекты подразделяются на неглубокие – мелкие и средние, и глубокие. Кроме того, для водотоков типы и группы подразделяются в зависимости от скорости течения, шероховатости дна (коэффициент Шези), степени извилистости (коэффициент извилистости).

5.2.1. Построение математической модели качества воды на основе схематизации процесса кдп и пв

5.2.1.1. Сущность метода кдп и пв

В настоящее время при планировании и разработке водоохранных комплексов большое значение имеют расчеты процессов конвективно-диффузионного переноса (КДП) и превращения веществ (ПВ). Именно они обеспечивают стабильность биологических про­цессов и устойчивость экологических циклов в районах ниже выпуска сточных вод. А характер и интенсивность протекания биологических процессов определяют предельно допустимую нагрузку на водоемы, водотоки, степень очистки сбросных вод и справедли­вое распределение затрат на очистку между всеми объектами, сбрасывающими сточные воды.

При проектировании и строительстве любого водоохранного комплекса необходимо соответствующее теоретическое обоснование. Но точные расчеты гидродинамических процессов конвективно-диффузионного переноса в пространстве и во времени и физико-химические превращения неконсервативных примесей в большинстве случаев невозможны из-за громоздкости или отсутствия аналитического решения уравнения КДП, описывающего распределение концентрации расчетного ингредиента в водоеме или водотоке. Полевые исследования и измерения процессов КДП и ПВ в естественных природных условиях трудны и дороги, кроме того, число возможных вариантов, как правило, во много раз превы­шает число реально существующих типовых объектов. Поэтому исследователи и проектировщики прибегают к числовым методам расчета или к методам математического моделирования.

При производстве исследований широко применяются современные средства вычислительной техники (аналоговые установки, электронные и сеточные вычислительные машины). Они являются не только эффективным средством решения инженерных задач, позволяют экономить много времени, средств и труда, но и открывают новые возможности в области исследований и проектирования.

Рассматриваемые вычислительные средства позволяют проводить имитационное моделирование и оптимизацию параметров системы локальных и бассейновых водоохранных комплексов с использованием как детерминированных так и вероятностных моделей или комбинаций.

В общем случае процесс формирования качества воды описывается системой гидродинамики и системой турбулентной дисперсии для неконсервативных веществ, которые также могут быть выражены как система конвективно-диффузионного переноса и превращения веществ (КДП и ПВ):

(2.1)

где С – мгновенное значение концентрации; x, y, z – координаты по соответствующим осям; t – временной параметр; Vx, Vy, Vz – средние скорости течения по соответствующим осям; Dx, Dx, Dz – коэффициенты турбулентного переноса или диффузии; с – параметр неконсервативности.

Для каждой выбранной группы водных объектов строятся математические модели, состоящие из уравнений движения и турбулентной диффузии. При изотропной турбулентности осреднённая скорость потока постоянна по всей области течения. Поэтому выбирается одна ось координат так, чтобы её направление совпало с направлением основного течения [3, 4,5].

Попытки создания моделей, совмещающих физико-динамические и химико-биологические процессы, обычно приводят к использованию дифференциальных уравнений. К достоинствам последних относится принципиальная возможность установления общих положений теории функционирования экосистем [4].

Типовые модели КДП и ПВ можно классифицировать, в соответствии с рисунком 2.

По мерности модели

Одномерная

Двухмерная

Трехмерная

По типу режима переноса

Стационарная

Нестационарная

По граничным условиям