Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
GLAVA_1-2-3.doc
Скачиваний:
16
Добавлен:
22.12.2018
Размер:
7.88 Mб
Скачать

§9. Общее уравнение прямой на плоскости, угол между прямыми

Мы знаем, что уравнение первой степени

(26)

в пространстве определяет плоскость, параллельную оси Oz, причём её нормальный вектор . Пусть эта плоскость пересекается с плоскостью по прямой (рис. 21) и – произвольная точка этой прямой. Так как точка M лежит на плоскости с уравнением (26), то координаты этой точки в пространстве удовлетворяют этому уравнению. Таким образом, координаты произвольной точки прямой удовлетворяют (26). Следовательно, это и есть уравнение указанной прямой .

Итак, уравнение (26) в пространстве Oxyz определяет плоскость, параллельную оси Oz. Это же уравнение на плоскости определяет прямую, являющуюся линией пересечения указанной плоскости с плоскостью . Уравнение (26) называется общим уравнением прямой на плоскости.

В дальнейшем у точки этой прямой и у нормального вектора этой прямой третьи нулевые координаты записывать не будем. Прямую будем изображать в плоскости (рис. 22).

Рис. 21 Рис. 22

Из изложенного видно, что в общем уравнении прямой коэффициенты и при текущих координатах являются проекциями нормального вектора прямой на оси координат. По аналогии с общим уравнением плоскости можно рассмотреть частные случаи общего уравнения прямой, когда те или иные коэффициенты этого уравнения обращаются в нуль.

Пусть на плоскости две прямые заданы уравнениями

(27)

(28)

соответственно, при этом – заданные числа; , – нормальные векторы этих прямых. За угол  между ними примем один из двух смежных углов, равный углу между нормальными векторами и этих прямых. Но последний определяется через косинус угла , который найдем по формуле (18) главы 1:

.

В этой формуле, выведенной ранее для косинуса угла между векторами в пространстве, угол берётся без знака, т. е. считается положительным и измеряется от до

§10. Уравнение прямой с угловым коэффициентом,

условия параллельности и перпендикулярности прямых

Пусть в общем уравнении прямой коэффициент . Тогда . Обозначим ,

, (29)

Получим

. (30)

Выясним геометрический смысл коэффициентов , . На оси Oy возьмём точку . Ее координаты удовлетворяют уравнению (30), следовательно, эта точка лежит на рассматриваемой прямой (в этом и состоит геометрический смысл числа ).

Пусть – угол, образованный рассматриваемой прямой с осью Ox. Он считается положительным, если отсчитывается от оси Ox против хода часовой стрелки. Пусть – произвольная точка рассматриваемой прямой. Из рис. 23 видно, что С другой стороны, из (30) следует, что Сравнив два послед-них соотношения, получим Это соотношение определяет геометрический смысл коэффициента , который называют угловым коэффициентом прямой на плоскости.

Условие параллельности прямых. Если , то прямые (27), (28) параллельны, так как коллинеарны их нормальные векторы. С учётом формулы (29) записанное выше условие параллельности прямых можно представить в виде .

Условие перпендикулярности прямых. Если имеет место равенство , то прямые (27) и (28) перпендикулярны. С учётом формулы (29) условие перпендикулярности прямых запишем так: .

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]