Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Veterinaria_Rukovodstvo_k_prakticheskim_zanyatim.doc
Скачиваний:
105
Добавлен:
21.03.2016
Размер:
1.02 Mб
Скачать

Обмен простых и сложных белков.

Белковому обмену принадлежит особое место среди других видов обмена веществ. Это объясняется выполнением белками специфических функций, которые не могут заменить ни углеводы, ни липиды: пластической, каталитической, иммунной.

Белки направляют и регулируют обмен веществ, создавая оптимальные условия для их собственного воспроизводства в живых системах. Исключение белка из клрма животных не столько сказывается на уменьшении массы органов и ткани, сколько в снижении активности ферментов, замедлении биосинтеза белка.

Поскольку белки всех организмов отличаются строгой видовой и тканевой специфичностью, организм человека и моногастричных животных использует белки пищи только после их полного гидролиза до АМК в желудочно-кишечном тракте под действием ряда протеолитических ферментов – петидаз. Все пептиды в зависимости от места расположения гидролизуемой пептидной связи делятся на:

1) эндопептидазы, гидролизующие пептидные связи, удалённые от концов пептидной цепи: пепсин, трипсин, химотрипсин, эластаза.

2) экзопептидазы, гидролизующие пептидые связи, образованные N- и C-концевыми аминокислотами: аминопептидаза, карбоксипептидаза, дипептидаза.

Желудочные и панкреатические пептидазы вырабатываются в неактивной форме, секретируются в месте действия, где активируются путём частичного протеолиза. Такой механизм образования активных ферментов необходим для защиты секреторных клеток желудка и поджелудочной железы от самопереваривания.

Переваривание белков в желудке происходит под действием пепсина. Профермент пепсиноген вырабатывается главными клетками слизистой желудка и при поступлении пищи секретируется в полость желудка. Пепсиноген активируется двумя способами:

1) соляной кислотой (медленно);

2) аутокаталитически (быстро) уже имеющимся пепсином

Желудочный сок содержит соляную кислоту, которая вырабатывается обкладочными клетками желудка и выполняет следующие функции:

1) оказывает бактерицидное действие;

2) вызывает частичную денатурацию белков пищи;

3) создаёт оптимум рН для пепсина;

4) активирует пепсиноген путём частичного протеолиза

Переваривание белков в кишечнике моногастричных животных происходит под действием:

1) ферментов поджелудочной железы: трипсина, химотрипсина, эластазы, карбоксипептидаз;

2) ферментов тонкой кишки: аминопептидаз, дипептидаз, трипептидаз.

Активная форма трипсина образуется в кишечнике при участии энтеропептидазы, которая отщепляет от N-конца трипсиногена гексапептид, что приводит к изменению конформации молекулы и формированию активного центра трипсина.

Остальные протеазы панкреатического сока: химотрипсиноген, прокарбоксипептидаза, проэластаза – активируются трипсином.

Активация панкреатических пептидаз происходит по каскадному механизму. Кишечные пептидазы синтезируются в энтероцитах сразу в активной форме.

Конечным результатом переваривания белков является образование свободных АМК, поступающих в клетки слизистой оболочки кишечника путём активного транспорта.

Переваривание белков жвачных животных происходит в основном в рубце, где осуществляется распад практически всех белков под действием ферментов бактерий (в основном, стрептококков) и простейших (инфузорий).

Большая часть свободных АМК, образующихся в результате переваривания белков, используется для синтеза собственных белков организма, часть на синтез биологически активных молекул: гормонов, биогенных аминов, а также нуклеотидов, гемма, креатинфосфата и многих других соединений, в том числе глюкозы в процессе глюконеогенеза.

Важнейший путь превращения АМК в организме – это реакции трансаминирования с α-кетокислотами с образованием новых (заменимых) АМК.

Ещё один путь метаболизма – декарбоксилирование АМК с образованием биологически активных молекул – биогенных аминов. Основным коферментом обмена АМК является пиридоксальфосфат (ПФ).

Деградация АМК происходит путём их дезаминирования: безазотистые остатки могут использоваться для синтеза глюкозы (глюконеогенез) или, превращаясь в ацетил-КоА, окисляться до углекислого газа и воды с образованием энергии (различаю гликогенные и кетогенные АМК).

В организме человека и животных ежесуточно распадается до аминокислот (АМК) около 400 г белков и столько же синтезируется. Основным источником АМК для человека являются пищевые белки. Суточная норма потребления белков для человека составляет около 100 г. Все 20 АМК, которые входят в состав белков организма, можно разделить на заменимые (синтезируемые самим организмом) и незаменимые (не синтезируются и должны поступать с пищей). Присутствие в пищевых белках всех незаменимых АМК определяет полноценность белкового питания человека и животных.

При недостаточном содержании бека в корме животного, неполноценном по аминокислотному составу, а также при заболеваниях желудочно-кишечного тракта происходит снижение его роста, замедление развития, нарушение репродуктивных функций, снижается сопротивляемость к инфекциям, а у сельскохозяйственных животных наблюдается снижение молочной и мясной продуктивности.

Вопросы для внеаудиторной теоретической работы по разделу:

  1. Динамичность белкового обмена. Понятие об азотистом балансе в организме животных.

  2. Биологическая ценность белков, незаменимые и заменимые аминокислоты. Виды патологии у животных, связанные с отсутствием полноценного белкового питания. Количество и качество белков в кормах сельскохозяйственных животных.

  3. Переваривание белков в желудочно-кишечном тракте. Особенности азотистого обмена у жвачных животных.Всасывание продуктов распада белков.

  4. Гниение белков в кишечнике под влиянием микроорганизмов и механизмы обезвреживания токсических продуктов.

  5. Промежуточные пути обмена аминокислот: дезаминирование, трансаминирование, трансдезаминирование, декарбоксилирование аминокислот.

  6. Механизмы обезвреживания аммиака в организме: орнитиновый цикл мочевинообразования.. Судьба безазотистого остатка аминокислот.

  7. Специфические пути обмена некоторых аминокислот.

  8. Особенности белкового обмена у птиц.

  9. Патология азотистого обмена.

  10. Взаимосвязь между обменом углеводов, жиров и белков.

  11. Источники составляющих компонентов пуринового кольца.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]