Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Книга по генетике.DOC
Скачиваний:
281
Добавлен:
29.05.2014
Размер:
1.74 Mб
Скачать

Раздел 8.1. Генетические линии животных.

Большая роль в исследовании проблем генетики челове-

ка и медицинской генетики принадлежит мутантным генетическим

линиям животных и, в особенности, генетическим линиям мышей

(Конюхов, 1969, 1980; Корочкин, 1978). Высокий процент

сходства по нуклеотидными последовательностям между кодирую-

щими, регуляторными и даже интронными областями гомологичных

генов млекопитающих и человека, а также наличие большого

числа консервативных групп сцепления с идентичным расположе-

нием генов наряду с возможностями использования очень мощных

экспериментальных подходов для идентификации и клонирования

генов линейных животных позволяют проводить параллельные

исследования, значительно ускоряющие эффективность поиска и

молекулярного анализа индивидуальных генов человека.

Для многих моногенных заболеваний человека животные,

несущие мутации в гомологичных генах, являются лучшими, а

зачастую и единственными моделями для исследования молеку-

лярных основ патогенеза и отработки оптимальных схем лече-

ния, в том числе и с применением методов генной терапии

(см.Главу IX). Поиск таких биологических моделей, прежде

всего, ведется, среди уже существующих генетических линий

животных с установленным типом наследования определенных

аномальных признаков. Наиболее трудным при этом является до-

казательство идентичности мутантных генов и, соответственно

первичных биохимических дефектов, у человека и у линейных

животных.

В различных питомниках мира, в том числе и в России,

созданы и поддерживаются кллекции, насчитывающие от десятков

до несколько сотен генетических линий различных эксперимен-

тальных животных - мышей, крыс, кроликов, собак и др. (Коню-

хов, 1969; 1980; Staat, 1969; Hogan et al, 1989; Бландова и

др., 1990). Среди них генетические линии мышей наиболее мно-

гочислены в первую очередь из-за высокой плодовитости,

удобства содержания, относительной легкости эксперименталь-

ного манипулирования и целого ряда других причин. Некоторые

из этих линий представляют собой случайные находки, другие,

а их большинство, получены в результате действия различных

мутагенных факторов. Так, значительное число биологических

моделей было получено путем биохимической селекции потомства

мышей самцов, обработанных сильными мутагенами - этилнитроз-

мочевиной, триэтиленмеламином или облученных Рентгеном. Так

были смоделированы на мышах альфа-талассемия, полицитемия,

почечный ацидоз (Erickson, 1988). Однако, такой способ полу-

чения животных-моделей, хотя и более эффективен, чем поиск

спонтанно мутировавших особей, также основан на чистой слу-

чайности и не позволяет направленно менять структуру нужного

гена.

Процесс создания подобных генетических линий обычно

включает отбор особей с фенотипическими отклонениями; анализ

наследования этих фенотипческих признаков; длительное близ-

кородственное разведение отселектированных особей. При моно-

генном наследовании такие линии могут либо целиком состоять

из мутантных гомозигот, либо поддерживаться через гетерози-

готных особей в случае сниженной жизнеспособности и наруше-

ния плодовитости у гомозигот.

На первом этапе поиска адекватной модели какого-либо

моногенного наследственного заболевания руководствуются

сходством клинических проявлений течения болезни и фенотипом

мутантных животных. Однако, одного этого сходства недоста-

точно (Конюхов, 1969). Необходимо доказать гомологичность

генотипической природы наблюдаемых нарушений, то есть дока-

зать, что у человека и у животных (мышей) фенотипические из-

менения обусловлены мутациями в гомологичных генах. Огромная

мировая генетическая коллекция мышей насчитывет несколько

сотен линий, в каждой из которых различные дефекты наследу-

ются по моногенному типу. Спонтанные биологические модели

наследственных болезней известны и достаточно полно изучены

для многих других экспериментальных и домашних животных.

Представляется удивительным, что, несмотря на большое

сходство геномов млекопитающих и наличие близких по первич-

ной структуре и тождественных по функциям структурных генов,

для значительной части наследственных болезней человека ге-

нетические аналоги среди животных до сих пор не найдены (Ко-

нюхов, 1969).

Это ограничение в настоящее время может быть преодалено

путем целенаправленного конструирования генетических модель-

ных линий животных. Экспериментальные основы такого подхода

уже хорошо разработаны (Erickson, 1988; Аллен и др., 1990;

Melton, 1993; Stewart et al., 1994). Для этого используют

технику культивирования и трансфекции эмбриональных стволо-

вых клеток (см.ниже), отбор in vitro клонов с нужными генет-

ческим изменениями и пересадку их в зародыши или в сомати-

ческие ткани животных. Для анализа экспрессии мутантных ге-

нов in vivo и оценки их биологического действия особенно

удобными оказались трансгенные животные.