Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
печать Shpory_po_TV.doc
Скачиваний:
5
Добавлен:
13.04.2019
Размер:
272.38 Кб
Скачать

37. Нормальное распределение, его числовые характеристики.

Нормальным называют распр-е в-тей НСВ, которое описывается плотностью f(x)=(1/СКО*SQR 2Пи)*e^-[(x-a)^2/2СКО^2], где a=M(X).

Данное распред-е определяется двумя параметрами: a и СКО, достаточно знать эти параметры, чтобы задать нормальное распред-е.

M(X)=a, D(X)=СКО^2

M(X)= ИНТЕГРАЛ(-беск до +беск)x*f(x)dx= ИНТЕГРАЛ(-беск до +беск)x*[(1/CКО*SQR2Пи)*e^-(x-a)/2*СКО^2].

ВВЕДЕМ замену (x-a)/СКО=t => x=a+ СКО*t; dx=(a+ СКО*t)dt= СКОdt

M(X)= ИНТЕГРАЛ(-беск до +беск) (a+ СКО*t)* (1/CКО*SQR2Пи)*e^-((t^2)/2)*СКОdt=

=a*(1/CКО*SQR2Пи)*CКО*ИНТЕГРАЛ(-беск до +беск) e^-((t^2)/2)*dt+СКО*(1/CКО*SQR2Пи)* СКО* ИНТЕГРАЛ(-беск до +беск) e^-(t/2)d(-t^2/2)=a+0=a

D(X)=ИНТЕГРАЛ(-беск до +беск)(x-M(x))^2*f(x)dx=ИНТЕГРАЛ(-беск до +беск)(x-a)^2*(1/СКО*SQR 2Пи)*e^-[(x-a)^2/2СКО^2]dx.

Вводим замену (x-a)/СКО=t => x=a+СКО*t. dx=(a+СКО*t)^2dt=СКОdt. tв=(+беск-а)/СКО=+беск; tн=(-беск-а)/СКО=-беск.

D(X)=ИНТЕГРАЛ(-беск до +беск)(a+СКО*t-a)^2*(1/CКО*SQR2Пи)*e^-((t^2)/2)*СКОdt= СКО^2*(1/CКО*SQR2Пи)*СКО*ИНТЕГРАЛ(-беск до +беск)(t^2)*e^-((t^2)/2)dt.

Интегрируем по частям

u=t, du=dt; dv=t*e^-((t^2)/2)dt, v=-e^-((t^2)/2).

СКО^2*[(1/SQR2Пи)t*-e^-((t^2)/2)|(-беск, +беск) - (1/SQR2Пи)*ИНТЕГРАЛ(-беск до +беск)-e^-((t^2)/2)dt]= СКО^2*[0+1]= СКО^2.

38. Нормальная кривая, ее свойства. Влияние параметров нормального распределения на вид нормальной кривой.

График плотности нормального распределения называют нормальной кривой (кривой Гаусса)

f(x)=(1/СКО*SQR 2Пи)*e^-[(x-a)^2/2СКО^2].

СВОЙСТВА

1. Ф-я определена на всей оси абсцисс (х в степение => х-любое число)

2. При всех знач-ях х ф-ия принимает + значения, т.е. норм кривая расположена над осью Ох (y>0).

3. Предел ф-ии при неограниченном возрастании х (по абсолют величине) равен 0. lim(|x| -> беск)f(x)=0, т.е. ось Ох служит горизонтальной асимптотой.

4. Исследуем ф-ию на экстремум и промежутки монотонности.

f ‘(x)=((1/СКО*SQR 2Пи)*e^-[(x-a)^2/2СКО^2] )’=(1/СКО*SQR 2Пи)*e^-[(x-a)^2/2СКО^2]*-(2(x-a))/ 2СКО^2=-[(x-a)/СКО^3*SQR 2Пи]*e^-[(x-a)^2/2СКО^2]

ГРАФИК

f ‘(x)=0 => -[(x-a)/СКО^3*SQR 2Пи]*e^-[(x-a)^2/2СКО^2]=0 => x-a=0, x=a

fmax=f(a)=(1/СКО*SQR 2Пи)*e^-[(a-a)^2/2СКО^2]= 1/СКО*SQR 2Пи.

5. Разность (x-a) содержится в аналитическом выражении ф-ии в квадрате, т.е. график ф-ии симметричен относительно прямой х=а.

6. Исследуем ф-ию на точки перегиба. Найдем вторую производную.

f “=(f ‘(x))’=(-[(x-a)/СКО^3*SQR 2Пи]*e^-[(x-a)^2/2СКО^2])’=

=(1/СКО^3*SQR 2Пи)*[ e^-[(x-a)^2/2СКО^2]+ e^-[(x-a)^2/2СКО^2]*-(2(x-a)^2/2СКО^2)]=

=(1/СКО^3*SQR 2Пи)*e^-[(x-a)^2/2СКО^2]*(1-((x-a)^2/СКО^2)).

f “=0 => 1-((x-a)^2/СКО^2)=0; (x-a)^2=СКО^2; (x-a)=+-СКО; x1, x2 = a+-СКО

f(a+-СКО)=(1/СКО*SQR 2Пи)*e^-[(a+-СКО -a)^2/2СКО^2]=(1/СКО*SQR 2Пи)*e^-[СКО^2/2СКО^2]= (1/СКО*SQR 2Пи)*e^-[1/2]=0,7*(1/СКО*SQR 2Пи).

Графики ф-ий f(x) и f(x-a) имеют одинаковую форму. Сдвинув график в положительном направлении оси Ох на а единиц масштаба при a>0 и в отрицательном при а<0, получим график f(x-a). Отсюда следует, что изменение величины параметра а (мат ожидания) не изменяет формы нормальной кривой, а приводит лишь к её сдвигу вдоль оси Ох: вправо, если а возраст., и влево, если а убыв.

Максимум дифференциальной ф-ии норм распред-я равен 1/СКО*SQR 2Пи. Отсюда следует, что с возрастанием СКО макс ордината норм кривой убывает, а сама кривая становится более пологой, т.е. сжимается к оси Ох; при убывании СКО норм кривая становится более островершинной и растягивается в положительном направлении оси Оу.