Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
1_5_Формирование пространственного изображения.doc
Скачиваний:
74
Добавлен:
01.12.2018
Размер:
2.77 Mб
Скачать

Приближение Кирхгофа

Приближение Кирхгофа применимо в тех случаях, когда расстояние ri от отверстия до точки наблюдения во много раз больше длины волны . Это условие уже использовалось нами при выводе формулы дифракции Френеля — Кирхгофа (6.37). Для контактной фотолитографии это условие означает, что зазор между фотошаблоном и пластиной z во много раз превышает длину волны экспонирования, т. е. из условия следует, что В этом случае и выражение (6.42) можно записать как

(6.43)

Выражение (6.43) является интегралом Кирхгофа. Приведем его к виду, сравнимому с результатами, полученными ранее (см. формулу (6.37)). Пусть, как и прежде, отверстие освещается сферической волной из точечного источника, расположенного в точке xs (см. рис. 6.8, a). Тогда

(6.44)

Уравнение (6.44) отличается от аналогичного уравнения (6.37) Френеля — Кирхгофа только значением коэффициента наклона.

Отметим, что формула (6.43) представляет собой выражение принципа Гюйгенса — Френеля в виде интеграла суперпозиции, который можно записать следующим образом:

(6.45)

где весовая функция определяется выражением

(6.46)

В выражении (6.46) член уравнения описывает сферическую волну, расходящуюся из точки (0, 0, 0), а коэффициент наклона (см. рис. 6.8, а). Физический смысл параметров j и  рассмотрен при анализе уравнения (6.37).

Таким образом, функция представляет собой сферическую волну, распространяющуюся из точки xo и умноженную на коэффициент наклона. При этом каждая точка xo отверстия W служит источником таких волн, которые суммируются в точке xi.

Приближение Френеля

Дальнейшие упрощения можно получить, принимая некоторые приближения для величины ri. Следуя Френелю, будем полагать, что расстояние z между экраном (объектом) и плоскостью наблюдения (изображением) значительно превышает максимальный линейный размер окна W (рис. 6.9).

Рис. 6.9. Формирование изображения в приближении Френеля

Кроме того, будем предполагать, что в плоскости наблюдения рассматривается только конечная область вблизи оси Z и что расстояние z намного больше максимального размера этой области, т. е.

Выражение (6.46) для функции принимает вид

т. е.

где

Точная формула для расстояния ri (см. рис. 6.9) будет выглядеть так:

(6.47)

Разложение Тейлора для квадратного корня дает следующую аппроксимацию его первыми двумя членами разложения:

(6.48)

С учетом этого приближения, которое называют приближением Френеля, в выражении для функции h можно сделать следующие упрощения:

 для амплитудного члена выражения провести аппроксимацию первого порядка:

 для фазового члена выражения провести аппроксимацию второго порядка:

В результате весовая функция в приближении Френеля будет иметь вид

(6.49)

Таким образом, когда расстояние z достаточно велико по сравнению с размерами объекта и изображения, можно использовать приближения Френеля. При этом сферическая волна вторичного источника заменяется параболической, а коэффициент наклона

Вернемся теперь к выражению (6.43) и перепишем его как интеграл суперпозиции с бесконечными пределами. При этом положим, что в соответствии с граничными условиями Кирхгофа функция U(xo, xi) за пределами отверстия W равна нулю. В результате выражение (6.43) в приближении Френеля примет вид

(6.50)

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]