Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Пособие по мат_инф.doc
Скачиваний:
167
Добавлен:
17.03.2016
Размер:
1.91 Mб
Скачать

Глава 5. Случайные величины

5.1. Понятие случайной величины

В том случае, если случайное событие выражается в виде числа, можно говорить о случайной величине. Случайной называют величину, которая в результате испытания примет одно возможное значение, наперёд неизвестное и зависящее от случайных причин, которые заранее не могут быть учтены.

Выпадение некоторого значения случайной величины хi. это случайное событие: Х = хi. Среди случайных величин выделяют дискретные и непрерывные случайные величины.

Дискретной случайной величинойназывается случайная величина, которая в результате испытания принимает отдельные значения с определёнными вероятностями. Число возможных значений дискретной случайной величины может быть конечным и бесконечным. Примеры дискретной случайной величины: запись показаний спидометра или измерений температуры в конкретные моменты времени.

Непрерывной случайной величинойназывают случайную величину, которая в результате испытания принимает все значения из некоторого числового промежутка. Число возможных значений непрерывной случайной величины бесконечно. Пример непрерывной случайной величины: запись показаний спидометра или измерений датчика температуры в течение конкретного интервала времени.

Любая случайная величина имеет свой закон распределения вероятностей и свою функцию распределения вероятностей. Прежде, чем дать определение функции распределения, рассмотрим переменные, которые её определяют. Пусть задано некоторое х – действительное число и получена случайная величина X, при этом (x>X). Требуется определить вероятность того, что случайная величина Х будет меньше этого фиксированного значения х.

Функцией распределения случайной величины Х называется функция F(х), определяющая вероятность того, что случайная величина Х в результате испытания примет значение меньшее значения х, то есть:

F(х) = Р(Х х),

(5.1)

где х – произвольное действительное число.

Случайная величина (непрерывная или дискретная) имеет численные характеристики:

1. Математическое ожидание М (Х). Эту характеристику можно сравнивать со средним арифметическим наблюдаемых значений случайной величины Х.

2. Дисперсия D(X). Это характеристика отклонения случайной величины Х от математического ожидания.

3. Среднее квадратическое отклонение (Х) для дискретной и непрерывной случайной величины Х – это корень квадратный из ее дисперсии:

.

(5.2)

Далее рассматриваются отличия между дискретной и непрерывной случайными величинами.

5.2. Дискретная случайная величина

5.2.1. Закон распределения дискретной случайной величины

Рассмотрим дискретную случайную величину на примере.

Пример 1.

Число появлений герба при трех бросаниях монеты является дискретной случайной величиной Х. Возможные значения числа появлений герба: 0, 1, 2, 3. Следует найти вероятность появления герба в одном испытании.

Решение.

Вероятность появления герба в одном испытании равна p=1/2. Противоположное ему событие: герб не выпал, вероятность этого события по формуле (4.5) равнаq=1-p=1/2.

1) Событие 1. «Три раза бросили монету и ни разу герб не выпал». Это сложное событие состоит из появления трёх совместных и независимых элементарных событий: «герб не выпал в одном испытании». Для события «три раза бросили и ни разу герб не выпал», которое обозначим Р(0), вероятность вычисляется по формуле умножения (4.6а) для независимых событий:

.

2) Событие 2. «Три раза бросили монету и один раз герб выпал». Это сложное событие состоит из появления одного из трёх несовместных и независимых событий: «герб выпал в одном из трёх совместных испытаний». Для события «три раза бросили монету и один раз герб выпал» вероятность будет состоять из суммы несовместных событий по формуле (4.2а), где каждое слагаемое вычисляется по формуле умножения (4.6а) для независимых событий:

.

3) Событие 3. «Три раза бросили и два раза выпал герб». Для этого события вероятность события будет состоять из суммы событий:

.

4) Событие 4. «Три раза бросили и все три раза выпал герб». Вероятность этого события совпадает с первым и вычисляется по формуле умножения (4.6а).

.

Здесь: p1, p2, p3– вероятность выпадения герба в 1, 2, 3 испытаниях.

q1, q2, q3– вероятность не выпадения герба в 1, 2, 3 испытаниях.

Результаты вычислений вынесены в таблицу 5.1.

Таблица 5.1

Событие Х

герб не выпал

герб выпал 1 раз

герб выпал 2 раза

герб

выпал 3 раза

хi

0

1

2

3

Вероятность события:

Р(хi)=рi

Законом распределения дискретной случайной величины называют соответствие между полученными значениями дискретной случайной величины и их вероятностями. Его можно задать:

1) таблично (рядом распределения);

2) графически;

3) аналитически (в виде формулы).

В примере 1 закон распределения задан в виде ряда распределения (таблицей 5.1), где представлены все возможные значения хiи соответствующие им вероятности рi= Р (Х = хi). При этом вероятности рiудовлетворяют условию:

,

потому что:

,

где число возможных значений n может быть конечным или бесконечным.

Графическое изображение ряда распределения называется многоугольником распределения. Для его построения возможные значения случайной величины (хi) откладываются по оси абсцисс, а вероятности (рi) – по оси ординат. Точки c координатами (хi, рi) соединяются ломаными линиями.

Функция F(х) для дискретной случайной величины вычисляется по формуле:

,

(5.3)

где суммирование ведется по всем значениям i, для которых хiх.

Пример 2.

Для задачи в примере 1 найти функцию распределения вероятности F(х) этой случайной величины и построить ее. Построить многоугольник распределения.

Решение.

Если х 0,тоF(х) = Р (Хх) = 0.

Если 0 х1,тоF(х) = Р (Хх) = 1/8.

Если 1 х2,то F(х) = Р (Хх) = 1/8 + 3/8 = 0,5.

Если 2 х3,тоF(х) = Р (Хх) = 1/8 + 3/8 + 3/8 = 7/8.

Если х 3, то F(х) = Р (Хх) = 1/8 + 3/8 + 3/8 + 1/8 = 1.

В таблицу 5.2 внесены значения функции распределения вероятности F(х) случайной величины х.

Таблица 5.2

1

2

3

4

5

Хi

0

1

2

3

>3

функция распределения F(х)

0

0,125

0,5

0,875

1

Для построения многоугольника распределения значения случайной величины х переписаны из таблицы 5.1 в таблицу 5.3 в более компактной форме.

Таблица 5.3

1

2

3

4

хi

0

1

2

3

Ряд распределения Р(хi)= рi

0,125

0,375

0,375

0,125

Многоугольник распределения вероятности представлен на рис. 5.1.

Рис. 5.1. Многоугольник распределения

Функция распределения вероятности представлена на рис.5.2.

Рис. 5.2. Функция распределения