Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Пособие по мат_инф.doc
Скачиваний:
167
Добавлен:
17.03.2016
Размер:
1.91 Mб
Скачать

4.4.2. Умножение вероятностей независимых событий

Произведением двух событий А и В называется событие, состоящее в совместном появлении этих событий.

Теорема 4. Если случайные события А и В независимые, то вероятность совместного появления событий А и В равно произведению вероятностей этих событий.

Р (А В) = Р(А)Р(В).

(4.6)

Запись Р(А)Р(В) можно представить в виде Р(А)Р(В).

Пример 9.

Студент должен сдать два экзамена в сессию. Вероятность сдать первый экзамен р1=0,8. Вероятность сдать второй экзамен р2=0,7. Какова вероятность, что студент сдаст два экзамена в сессию.

Решение.

Событие А – сдать первый экзамен. Событие В – сдать второй экзамен. Оба события независимы. Событие АВ – сдать два экзамена. Вероятность сдать два экзамена вычисляется по формуле (4.6).

Р(А В) = Р(А)Р(В) = р1р2= 0,70,8 = 0,56.

Вероятность совместного появления нескольких событий, независимых в совокупности, равна произведению вероятностей этих событий.

Р(А1А2…Аk) = Р(А1)Р(А2)…Р(Аk).

(4.6a)

Частным случаем совместного появления нескольких независимых событий является равенство вероятностей всех событий Р(А1) =Р(А2)=…=Р(Аk) в формуле (4.6a).

При повторных испытаниях с одинаковой вероятностью появления события используется формула Бернулли.

В теории вероятностей рассматривается определённый тип задач. Производится nнезависимых испытаний, в каждом из которых событие А может появиться с одинаковой вероятностью равнойpи не появиться с вероятностью равнойq. Требуется вычислить вероятность того, что приnиспытаниях событие А появится ровноkраз и не появится (n-k) раз. При этом не учитывается последовательность события А, т.е. ровноkраз подряд или в определённом порядке. Вероятность сложного события, состоящего в том, что вnиспытаниях событие А появится ровноkраз вычисляется по формуле Бернулли:

Рn(k) = C knp kq n-k .

(4.7)

4.4.3. Вероятность появления хотя бы одного события

Вероятность того, что произойдет, по крайней мере, одно из событий ,

определяется по формуле:

Теорема 5.Вероятность появления хотя бы одного из событий (А1, А2,…,Аn), независимых в совокупности, равна разности между единицей и произведением вероятностей противоположных событий.

P (A) = 1 – q1q2...qn.

(4.8)

Пример 10.

Студент сдает два экзамена в сессию. Вероятность сдать первый экзамен р1=0,8. Вероятность сдать второй экзамен р2=0,7. Какова вероятность, что студент сдаст хотя бы один экзамен в сессию.

Решение.

Вероятность события «не сдать первый экзамен» равна:

q1=1–р1=1–0,8 = 0,2.

Вероятность «не сдать второй экзамен»: q2=1– р2=1–0,7=0,3.

Оба события независимы. Вероятность события Р(А), где событие А – «студент сдаст хотя бы один экзамен», вычисляется по формуле (4.8):

Р(А)=1–q1q2=1–0,20,3=1–0,06=0,94.

Пример 11.

Три стрелка стреляют в цель независимо друг от друга. Вероятность попадания в цель для первого стрелка равна 0,6, для второго 0,7 и для третьего 0,75.

Найти вероятность:

  1. Хотя бы одного попадания в цель, если каждый стрелок сделает по одному выстрелу.

  2. Одного и только одного попадания в цель.

  3. «Попадут в цель только два стрелка».

  4. «Попадут в цель все стрелки одновременно».

  5. Промаха всех стрелков одновременно.

Решение.

Пусть А, В, С – события, состоящие в том, что соответственно в цель попал первый, второй, третий стрелок. Из условия задачи следует, что:

Р(А) = 0,6; Р(В) = 0,7; Р(С) = 0,75.

1) Вероятность хотя бы одного попадания в цель равна: Р(А + В + С).

Событие (А+В+С) – хотя бы одно попадание в цель. Вероятность хотя бы одного попадания в цель по формуле (4.8): P(A+B+C)=1-P(A)P(B)P(C).

P(A+B+C)=1– (1–0,6)(1– 0,7)(1– 0,75)=1– 0,40,30,25 =1-0,03= 0,97.

2) Вероятность только одного попадания в цель.

Пусть D – событие, состоящее в том, что в цель попал только один стрелок. События «хотя бы одно попадание» и «одно попадание» – разные события. В задаче одно и только одно попадание – это событие D, состоящее из суммы событий: D=ABC+ABC+ABC.

Его вероятность из-за независимости стрельбы и несовместности слагаемых событий может быть определена по формулам (4.2а), (4.7):

.

Р(D)=0,6(1–0,7)(1–0,75)+0,7(1–0,6 )(1–0,75)+0,75(1–0,6 )(1– 0,7) = 0,205.

3) Вероятность того, что попадут в цель только два стрелка.

Пусть X – событие, состоящее в том, что в цель попали только два стрелка.

X=ABC+BAC+C AB.

Тогда вероятность того, что попадут в цель только два стрелка, равна:

.

P(X)=(1– 0,6)0,70,75+0,6(1– 0,7)0,75+0,60,7(1– 0,75)=0,21+0,135+0,105 =0,45.

4) Вероятность того, что попадут в цель все стрелки одновременно.

Событие ABC – все стрелки попали в цель.

Вероятность того, что попадут в цель все стрелки одновременно равна:

P(ABC) = P(A)P(B)P(C) = 0,60,70,75 = 0,315.

5) Вероятность промаха всех стрелков одновременно Р().

Событие ABC– все промахнулись. Вероятность промаха всех стрелков одновременно:P(ABC)=0,40,30,25=0,03.

Для проверки правильности решения используют формулу (4.3) для полной группы событий:

Р(D) + P(X) + P(ABC) + Р(ABC) = 0,205 + 0,45 + 0,315 + 0,03 = 1.