Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
электротехника2.doc
Скачиваний:
339
Добавлен:
10.06.2015
Размер:
4.16 Mб
Скачать

Метод контурных токов

1. Недостатки МТВ

Основной недостаток – довольно большое количество уравнений и соответственно трудоемкость работы. П оэтому были разработаны другие методы, в частности метод контурных токов (МКТ) и метод узловых напряжений или потенциалов (МУН), где меньше уравнений.

2. Основы МКТ

В качестве неизвестных здесь используются так называемые контурные токи. Это некоторые условные мысленные токи, протекающие по выбранным независимым контурам. В качестве дополнительных неизвестных берутся напряжения на идеальных источниках тока. Система уравнений составляется только на основе второго закона Кирхгофа с применением закона Ома. Конкретные токи ветвей (действительные токи) определяются как алгебраическая сумма соответствующих контурных токов, протекающих через ветвь.

3. Определение числа уравнений и выбор контуров для МКТ

Количество уравнений определяется по формуле:

Контуры выбираются так, чтобы в них не входили идеальные источники тока (основные контуры). Дополнительные контуры выбираются с одним источником тока. Их уравнения в систему не включаются, но их влияние учитывается при решении системы.

4. Пример использования

I1

NB=5, NУЗ=3, NИИТ=1.

Выбираем 1 и 2 контуры без идеальных источников тока. Составляем систему уравнений для основных контуров (1 и 2), используя контурные токи I,I, причем I=J2..

Решив данную систему и определив контурные токи, найдем токи ветвей следующим образом:

Для определения напряжения на источнике тока составляется вспомогательное уравнение по закону Кирхгофа для дополнительного (3) контура:

Можно выделить алгоритм расчета:

  1. Определение количества уравнений

  2. Выбор основных и дополнительных контуров

  3. Составление системы уравнений для контурных токов

  4. Решение системы уравнений

  5. Определение токов ветвей

  6. Определение напряжений на источниках тока

5. Общая стандартная форма записи системы уравнений по мкт

Записывают и в матричном виде для резистивных цепей с источниками постоянного действия

Здесь: IKK – соответствующие контурные токи,

R11 – контурное сопротивление первого контура, R22 – второго и т.д.;

R12 – взаимное сопротивление между первым и вторым контурами (учитывается с +, если контурные токи совпадают и с - , если не совпадают) и аналогично;

E11 – контурная ЭДС 1 контура, которая содержит алгебраическую сумму ЭДС 1 контура и включает влияние источников тока на контур. Далее аналогично.

Причем обычно R12 = R21 а если есть управляемые источники, то R12 и R21 могут быть не равны.

6. Применение мкт

Целесообразно применять для сложных схем с несколькими однотипными источниками, у которых частота одна и та же. Если есть L- и C-элементы и частоты источников одинаковые, то применяется в комплексной форме. Если частоты действия разные, то можно применять совместно с методом наложения для расчета частичных токов.

Принцип и метод наложения в теории цепей.

Принцип наложения или суперпозиции – это физический принцип, который говорит, что результирующее действие, возникающее от воздействия нескольких сил, может быть в ли­нейной системе найдено как алгебраическая сумма от действий каждой силы в отдельности. В теории цепей под силой рассматривается воздействие каждого источника. Тогда можно заключить, что ток, который возникает на участке цепи под действием нескольких источников, работающих одновременно, можно определить как алгебраическую сумму частичных токов, каждый из которых возникает под действием своего источника, работающего отдельно от остальных источников.

Частичные токи рассчитываются каждый в своей схеме замещения, в которой оставляют один источник, а остальные заменяют следующим образом: идеальный источник тока – разрывом (J=0), идеальный источник напряжения – перемычкой, проводником (E=0), реальные источники энергии – внутренними сопротивлениями.

К полученным схемам применяют законы Кирхгофа, законы Ома. На основе этих положений возникает метод наложения для расчетов токов и напряжений. Особенно он необходим, когда в цепи действует несколько разнотипных источников (например, с разными частотами, с разными видами действия, с разной формой воздействия).

Рассмотрим на примере.

Пример 1

К данной схеме можно применить как метод наложения, так и метод токов ветвей.

Составим четыре схемы замещения, в каждой из которых будет действовать только один источник энергии.

1)

I1E1=E1/(R1+R3+R45).

2)

При этом надо учитывать направления частичных токов и источников.

3)

4)

Как мы видим, в данном примере решение было бы легче при применении метода токов ветвей.

Пример 2 Здесь Е1- источник постоянной эдс, а j2 – источник переменного тока .

В данном случае мы можем использовать только метод наложения. Составим две схемы замещения, в первой из которых рассчитываются частичные токи от источника постоянной эдс. Поэтому в ней индуктивность заменена перемычкой, а емкость – разрывом. Во второй схеме рассчитываются частичные токи от источника переменного тока и здесь необходимо перевести все токи, напряжения и сопротивления в комплексную форму и записать законы Кирхгофа в комплексной форме.

Frame21

I1E1 IR2E1 C i1 j2 iR2 j2 ic j2

L

I3E1 i2 = j2 i3 j2

I1E1=E1/(R1+R2)=I2E1=I3E1. Тут надо составлять уравнения по МКТ в комплексной форме. Например, по 1 закону

I1J2+ IR2J2+ ICJ2 J2=0, - ICJ2 - IR2J2+ I3J2=0.

Можно использовать и общую проводимость относительно источника тока. , , , . Аналогично остальные токи

В итоге получается, что i1=I1E1+i1 j2, iR2=IR2E1iR2j2, ic=icj2,

i3=I3E1i3j2, i2=j2.