Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
ФЧЖ теория.docx
Скачиваний:
9
Добавлен:
08.09.2023
Размер:
792.67 Кб
Скачать

9. Нервные волокна – строение, свойства, механизм проведения возбуждения

Ответ. Нервные волокна — длинные отростки нейронов, покрытые глиальными оболочками. По нервным волокнам распространяются нервные импульсы, по каждому волокну изолированно, не заходя на другие. В различных отделах нервной системы оболочки нервных волокон значительно различаются по своему строению, что лежит в основе деления всех волокон на миелиновые и безмиелиновые. Те и другие состоят из отростка нервной клетки, лежащего в центре волокна, и поэтому называемого осевым цилиндром (аксоном), и, в случае миелиновых волокон, окружающей его оболочкой. В зависимости от интенсивности функциональной нагрузки нейроны формируют тот или иной тип волокна. Для соматического отдела нервной системы, иннервирующей скелетную мускулатуру, обладающую высокой степенью функциональной нагрузки, характерен миелиновый (мякотный) тип нервных волокон, а для вегетативного отдела, иннервирующего внутренние органы — безмиелиновый (безмякотный) тип. Покрытые оболочкой сплетения пучков нервных волокон образуют нервы. При формировании безмиелинового нервного волокна осевой цилиндр (отросток нейрона) погружается в тяж из леммоцитов, цитолеммы которых прогибаются и плотно охватывают осевой цилиндр в виде муфты, края которой смыкаются над ним, образуя дупликатуру клеточной мембраны — мезаксон. Соседние леммоциты, входящие в состав сплошного глиального тяжа, своими цитолеммами образуют простые контакты. Безмиелиновые нервные волокна имеют слабую изоляцию, допускающую переход нервного импульса с одного волокна на другое, как в области мезаксона, так и в области межлеммоцитарных контактов. Миелиновые нервные волокна значительно толще безмиелиновых. Принцип образования их оболочек такой же, как и безмиелиновых, то есть осевые цилиндры также прогибают цитолемму глиоцитов, образуя линейный мезаксон. Однако, быстрый рост нейронов соматического отдела нервной системы, связанный с формированием и ростом всего организма, приводит к вытягиванию мезаксонов, многократному обращению леммоцитов вокруг осевых цилиндров. В результате образуются концентрические наслоения. При этом цитоплазма с ядром леммоцитов оттесняется в область последнего витка, образующего наружный слой оболочек волокна, называемой шванновской оболочкой или неврилеммой. Внутренний слой, состоящий из витков мезаксона, называется миелиновым или миелиновой оболочкой. Следствием того, что миелинизация происходит в процессе роста как отростков нейронов, так и самих леммоцитов, является постепенное увеличение количества витков и размеров мезаксона, то есть каждый последующий виток шире предыдущего. Следовательно, последний виток, содержащий цитоплазму с ядром леммоцита, является самым широким. Толщина миелина по длине волокна неоднородна, а в местах контактов соседних леммоцитов слоистая структура исчезает и контактируют лишь наружные слои, содержащие цитоплазму и ядро. Места их контактов называются узловыми перехватами (перехватами Ранвье), возникающими вследствие отсутствия здесь миелина и истончения волокна. Свойства нервных волокон. Самая высокая возбудимость по сравнению с мышечной и железистой тканями. Наибольшая лабильность по сравнению с мышечной и железистой тканями. Нервные волокна практически не утомляются, так как основной процесс возбуждения идет без расхода энергии за счет пассивных входа Na+ и выхода К+ в малых количествах на фоне очень больших градиентов их концентраций. Большая скорость прохождения импульса. Наличие от нейрона к периферии (к окончанию аксона) аксонного тока, с которым в нервные окончания поступают все необходимые вещества. Возбуждение проявляется специфическими и неспецифическими изменениями, регистрируемыми в клетке. Специфическим проявлением возбуждения для нервных клеток являются генерация и проведение нервного импульса на относительно большие расстояния без уменьшения его амплитуды. К неспецифическим проявлениям возбуждения нервных и мышечных клеток относят изменение проницаемости клеточных мембран для различных веществ, ускорение обмена веществ и соответственно увеличение поглощения клетками кислорода и выделения углекислого газа, снижение рН, возрастание температуры клетки и т.д. Эти проявления во многом сходны с компонентами ответной реакции на действие раздражителя невозбудимых клеток. Активное состояние возникает под действием раздражителя и характеризуется: выраженным изменением уровня обменных процессов; проявлениями функциональных отправлений ткани. Возбуждение — активный физиологический процесс, возникающий под действием раздражителя, способствующий переходу ткани из состояния физиологического покоя к специфической деятельности (генерация нервного импульса, сокращение, секреция). Неспецифические признаки возбуждения: изменение проницаемости клеточной мембраны; изменение движения ионов через нее; изменение заряда мембраны; повышение обменных процессов; увеличение затраты энергии. Торможение — активный физиологический процесс, возникающий под действием определенного раздражителя и характеризующийся угнетением или прекращением функциональной активности ткани. Неспецифические признаки торможения: изменение проницаемости клеточной мембраны; изменение движения ионов через нее; изменение заряда мембраны; снижение уровня обменных процессов; снижение затраты энергии. Закон анатомической и физиологической непрерывности – возбуждение может распространяться по нервному волокну только в случае его морфологической и функциональной целостности. Закон двустороннего проведения возбуждения – возбуждение, возникающее в одном участке нерва, распространяется в обе стороны от места своего возникновения. В организме возбуждение всегда распространяется по аксону от тела клетки (ортодромно). Закон изолированного проведения. В периферических нервных волокнах возбуждение передается только вдоль нервного волокна, но не передается на соседние, которые находятся в одном и том же нервном стволе.